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Integrated Arrival-Departure-Surface-Enroute Air Traffic 
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This paper presents the application of Traffic Flow Management (TFM) optimizer to the 
integrated arrival-departure-surface-enroute (IADSE) optimization problem. The optimizer 
uses the Bertsimas-Lulli-Odoni (BLO) model, which can be used model flights with multiple 
possible routes in a given volume of airspace using large-scale Mixed-Integer Linear 
Programs (MILP). Furthermore a novel method is proposed, by which the separation 
between each aircraft is converted into convex constraints, such that they can be used in the 
BLO framework.  

By leveraging the strong linear programming relaxation and by using the Dantzig-Wolfe 
(DW) decomposition technique, the large-scale MILP is decomposed into a large number of 
sub-problems and one master problem. The number of sub-problems is equal to the number 
of flights and can be solved independently of each other, whereas the master problem 
consists of a significantly smaller number of constraints than the original MILP. The sub-
problems are therefore amenable to solution in parallel, resulting in significant acceleration 
over a solution to the original, monolithic problem. 

 The proposed algorithm is implemented to schedule traffic in the New York N90 
Terminal Radar Approach Control. The results obtained from the proposed optimizer was 
compared with that obtained from a first-come-first-served scheduler. It was found that the 
proposed algorithm performed better in minimizing aircraft delays than the baseline 
scheduler.  

Nomenclature 
ATC    Air Traffic Control 
ATM    Air Traffic Management 
BSP    Bertsimas and Stock-Patterson 
BLO    Bertsimas-Lulli-Odoni 
DW Decomposition Dantzig-Wolfe Decomposition 
FAA    Federal Aviation Administration 
LP    Linear Program 
TFM    Traffic Flow Management 
TRACON    Terminal Radar Approach Control 
SJC    Norman K. Mineta San Jose International Airport 
JFK    John F. Kennedy International Airport 
SFO    San Francisco International Airport 

I. Introduction 
IR traffic demand growth in response to economic activity has led to congestion and increased delays at the 
busiest airports in the National Airspace System (NAS). NASA’s Airspace Systems Program, through its 

Technical Challenge 2, aims to significantly increase the throughput at airports and metroplexes while reducing 
sensitivity to off-nominal behavior (increased robustness) and minimizing environmental impact. Similar objectives 
have been identified for airport surface operations. NASA and the Federal Aviation Administration (FAA) have 
been involved in extensive efforts to develop advanced concepts, technologies, and procedures for the Next 
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Generation Air Transportation System (NextGen). The objective of these research efforts has been to improve the 
capacity, efficiency, and safety in the next-generation National Airspace System (NAS). Improvements can come in 
the form advanced communication, navigation, and surveillance capabilities, fuel-efficient vehicle designs, and 
through improved air-traffic operations realized using sophisticated automation systems. A significant portion of the 
NextGen research is aimed at (i) developing ground-side automation systems to assist controllers in strategic 
planning operations such as scheduling flights in terminal area, (ii) developing tactical controller decision support 
tools to separate and space the traffic, and (iii) developing flight-deck-side automation to assist pilots in 
accomplishing airborne merging and spacing operations.  

A relatively newer effort is the integration of arrival, departure, surface, and enroute (IADSE) operations in order 
to further improve efficiency in resource utilization. The objective of NAS-wide integrated arrival, departure, 
surface and enroute optimization is to create an optimal gate-to-gate traffic flow management solution based on 
capacity constraints and separation rules. For example, airport surface optimization should consider taxiway and 
runway capacities and gate occupancy constraints. Minimum separation rules between taxiing aircraft and 
successive departures must also be enforced. Compliance of route, speed and altitude constraints, and separation 
rules for different classes of aircraft arriving and departing from airports within metroplexes is required. In addition 
to surface and terminal airspace capacities and separation rules, the optimization procedure needs to comply with 
sector capacity constraints and enroute airspace separation standards. The optimization procedure should seek to 
output controls that can be practically implemented by air traffic control such that delays are minimized and 
equitably distributed between aircraft operators, thereby maximizing the surface and airspace utilization. Some of 
the controls currently used by air traffic control are- ground-hold, miles-in-trail (MIT) or minutes-in-trail (MINIT), 
route-change, speed-change, altitude-change, and required time of arrival (RTA). For example, Traffic Management 
Advisor (TMA) creates a meter-list that specifies a scheduled time of arrival (STA) for arrivals at a certain distance 
from the airport for an arrival meter-fix or meter-arc. The optimal solution could create such meter-lists at chosen 
control locations in the airspace for air traffic control. It could also compute controls for aircraft such as the changes 
in speed within aircraft performance limits for use by the air traffic control. TFM programs manage the imbalance 
between the traffic demand and the available airspace capacity using Traffic Management Initiatives (TMIs) such as 
Ground Stops, Ground Delay Programs (GDPs), Mile-In-Trail (MIT), Rerouting, Airborne Holding, Airspace Flow 
Programs (AFP), Sequencing Programs and Fix Balancing. 

A method that has been applied successfully to this class of problems is the Bertsimas and Stock-Patterson 
(BSP)1 optimization procedure accelerated using the Dantzig-Wolfe decomposition. The binary integer program 
formulated by Bertsimas and Stock-Patterson approach is a well-understood and often-used2,3 optimization approach 
to the aircraft-level TFM problem, as is done by Bertsimas Lulli and Odoni (BLO)4. This model solves the TFM 
problem with multiple airports and deterministic sector capacities. However possible extensions of BSP/ BLO 
framework to solve air traffic control problems in terminal area or surface is missing in the literature5.   

The current work proposes a solution wherein the TFM problem in the BSP framework can be formulated to 
solve an IADSE problem. The basic difference between the TFM and IADSE problem is that the former uses sector 
capacities as constraints and is developed in a control-volume formalism. On the other hand the IADSE problem 
uses the separation between aircrafts as constraints and uses a trajectory-based formalism. Hence, the current work 
proposes an innovative method to convert the separation constraints into convex capacity constraints such that the 
IADSE problem can be solved in the BSP/BLO framework. Furthermore, the current work also develops a parallel 
methodology such that the Dantzig-Wolfe based decomposition can be efficiently implemented into multicore 
integrated hardware architectures.  

The rest of the paper is organized as follows: Section II describes the problem briefly and derives the constraints 
in the BLO framework, Section III describes the Dantzig-Wolfe (DW) solution methodology, Section IV deals with 
the implementation of the DW algorithm in many-core integrated architecture, Section V presents result of 
implementation of the current algorithm to New York TRACON, finally Section VI concludes the current work.  

II. Problem Description and Constraint Formulation 
In this section, constraint generation using the BLO formalism is derived4,6. The BLO model formulates the TFM 

problem in terms of the following optimization problem: 

      
max 𝒄𝒄⊤𝒙𝒙 
𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃 
𝒙𝒙 ∈ {0,1} 

(1) 
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To obtain the decision variables 𝒙𝒙 a binary integer programming problem is solved.  It can be shown that the 
problem has a strong linear programming relaxation which make it amenable to be solved using conventional LP 
techniques such as the simplex method7.  

A. Decision Variable and Data Sets 
The variable of interest in IP formulation is denoted by 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡 , which is a binary variable, i.e. 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡 ∈ {0,1}. A 

value of 1 indicates that flight 𝑓𝑓 ∈ ℱ, where ℱ is the set of all the fights currently in the system, reaches Node Y 
from Node X, by time interval 𝑡𝑡 ∈ 𝒯𝒯 using an arc connecting the two nodes. Nodes X and Y belong to set 𝒩𝒩𝑓𝑓 that is 
composed of all nodes on the route(s) of flight 𝑓𝑓. The sets 𝒦𝒦𝑑𝑑  and 𝒦𝒦𝑎𝑎  denote the set of nodes corresponding to 
departure and arrival airports, respectively. Since an airport in general can be a departure as well as an arrival 
airport, 𝒦𝒦𝑑𝑑 ∩𝒦𝒦𝑎𝑎 ≠ ∅. Let 𝑘𝑘𝑓𝑓𝑑𝑑 ∈ 𝒦𝒦𝑑𝑑  and 𝑘𝑘𝑓𝑓𝑎𝑎 ∈ 𝒦𝒦𝑎𝑎 denote departure and arrival airport nodes for flight 𝑓𝑓, 
respectively. Node 𝑞𝑞�𝑘𝑘𝑓𝑓𝑑𝑑� denotes the departure airport boundary, and 𝑝𝑝�𝑘𝑘𝑓𝑓𝑎𝑎� denotes the arrival airport boundary. 
The distinction between an airport node and its boundary node is required in order to model ground holds and 
runway delays. Both are expressed in terms of the number of time units required by a flight to reach the airport 
boundary from the airport node. 

The concept of ‘airport’ and ‘airport boundary’ are only introduced in order to develop equations while 
following the BLO formalism. In reality, the first node of an aircraft’s trajectory in a given simulation can be 
considered the airport node. For example, if the first appearance of an aircraft is at the TRACON boundary, the first 
STAR can be considered the airport node. The BLO model does not distinguish between arriving and departing 
traffic, and therefore, modeling of shared resource such as waypoints, meterfixes and taxiways is straightforward. 
Arriving and departing traffic can be penalized separately. In fact, individual flights can be penalized separately. For 
instance, variables can be fixed beyond a certain horizon. 

The arc 𝑋𝑋𝑋𝑋 is a member of set 𝒜𝒜𝑓𝑓 = �𝑋𝑋𝑋𝑋�𝑋𝑋,𝑌𝑌 ∈ 𝒩𝒩𝑓𝑓� that is composed of all arcs on the route(s) of flight 𝑓𝑓. The 
set Γ𝑓𝑓+(𝑋𝑋) = �𝑌𝑌�𝑋𝑋𝑋𝑋 ∈ 𝐴𝐴𝑓𝑓� and Γ𝑓𝑓−(𝑋𝑋) = �𝑌𝑌�𝑌𝑌𝑌𝑌 ∈ 𝐴𝐴𝑓𝑓� are the set of nodes that have arcs from Node X and leading 
into Node Y respectively, for flight 𝑓𝑓. 

Whereas sets 𝒩𝒩𝑓𝑓 and 𝒜𝒜𝑓𝑓 denote all possible nodes and all possible arcs for flight 𝑓𝑓, the sets 𝒩𝒩𝑓𝑓
∗ ⊆ 𝒩𝒩𝑓𝑓 and 𝒜𝒜𝑓𝑓

∗ ⊆
𝒜𝒜𝑓𝑓 denote the nodes and arcs corresponding to the scheduled route of flight 𝑓𝑓. If only one route is modeled for a 
flight, then 𝒩𝒩𝑓𝑓∗ = 𝒩𝒩𝑓𝑓  and 𝒜𝒜𝑓𝑓

∗ = 𝒜𝒜𝑓𝑓. Sets 𝒩𝒩𝑓𝑓 and 𝒜𝒜𝑓𝑓 can consist of nodes and links that are not currently used but 
can possibly be used if, for example, runway or TRACON configuration changes. 

The variables 𝑙𝑙𝑓𝑓,𝑋𝑋𝑋𝑋, 𝑟𝑟𝑓𝑓, and 𝑑𝑑𝑓𝑓 denote the travel time (number of time periods) for flight 𝑓𝑓 over arc XY, the 
scheduled departure time period, and the scheduled arrival time period, respectively. It is noted in Ref. 6 that 
𝑙𝑙𝑓𝑓,𝑘𝑘𝑓𝑓

𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓
𝑑𝑑� = 𝑙𝑙𝑓𝑓,𝑝𝑝�𝑘𝑘𝑓𝑓

𝑎𝑎�,𝑘𝑘𝑓𝑓
𝑎𝑎 = 0,∀𝑘𝑘𝑓𝑓𝑑𝑑 ∈ 𝒦𝒦𝑑𝑑 , 𝑘𝑘𝑓𝑓𝑎𝑎 ∈ 𝒦𝒦𝑎𝑎  . In other words, a flight reaches the departure airport boundary 

immediately after leaving the departure airport node, and a flight reaches the arrival airport node immediately after 
leaving the arrival airport boundary. It also follows that 

   𝑟𝑟𝑓𝑓 = 𝑑𝑑𝑓𝑓 + � 𝑙𝑙𝑓𝑓,𝑋𝑋𝑋𝑋 
𝑋𝑋𝑋𝑋∈𝐴𝐴𝑓𝑓

∗

 (2) 

In other words, the scheduled arrival time of the flight is given by the sum of the departure time and flight times 
along scheduled route segments. Furthermore, 𝑙𝑙𝑓𝑓,𝑋𝑋𝑋𝑋 and 𝑙𝑙𝑓𝑓,𝑋𝑋𝑋𝑋 denote the maximum and minimum number of time 
segments for flight 𝑓𝑓 on arc XY. 

The binary BLO variables can be used to determine quantities of interest for TFM. For instance, the time 
segment in which the flight 𝑓𝑓 reaches node 𝑛𝑛 is denoted by 𝑇𝑇𝑓𝑓,𝑛𝑛 and given by the following summation: 

      𝑇𝑇𝑓𝑓,𝑛𝑛 = � �𝑡𝑡�𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡 − 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡−1 �
𝑡𝑡∈𝒯𝒯𝑋𝑋∈Γ𝑓𝑓

−(𝑌𝑌)

  (3) 

It follows that given the time of entry at a node and the time of entry at a preceding node, the number of time 
intervals required to travel on the arc connecting the nodes can be calculated. Similarly the number of aircraft which 
reach a node 𝑛𝑛 at a given time 𝑡𝑡 is given by the following summation: 

      𝑆𝑆𝑛𝑛,𝑡𝑡 = � � �𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡 − 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡−1 �
𝑋𝑋∈Γ𝑓𝑓

−(𝑛𝑛)𝑓𝑓∈ℱ

  (4) 
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Additional quantities such as sector counts (given the arcs belonging to a sector) can also be calculated, as 
detailed in Ref. 4. 

B. Constraint Formulation 
The variables are linked with constraints resulting from the spatio-temporal representation of the graph. The so-

called flight structure constraints define the continuity in time and space for a flight. The temporal continuity 
constraints6 are represented by the following linear inequalities and equalities: 

      
𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡−1 ≤ 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡 , 𝑡𝑡 ∈ 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋
∗ , (𝑋𝑋,𝑌𝑌) ∈ 𝒜𝒜𝑓𝑓 ,𝑓𝑓 ∈ ℱ 

𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡−1 = 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡 , 𝑡𝑡 ∈ 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋 ∖ 𝒯𝒯𝑋𝑋𝑋𝑋,𝑌𝑌
∗ , (𝑋𝑋,𝑌𝑌) ∈ 𝒜𝒜𝑓𝑓 ,𝑓𝑓 ∈ ℱ 

(5) 

where 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋
∗  is the set of feasible time units in which a flight 𝑓𝑓 can reach Node Y from Node X over the arc 

connecting the two nodes, and 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋 is the smallest set of consecutive time intervals that contains 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋
∗ . These 

constraints state that if a flight was in node 𝑋𝑋 by time period 𝑡𝑡, then this must also hold true for any later time period 
𝑡𝑡′ > 𝑡𝑡. 

The spatial continuity constraints6 are given by the following inequalities: 

      
� 𝑥𝑥𝑓𝑓,𝑌𝑌𝑌𝑌

𝑡𝑡+𝑙𝑙𝑓𝑓,𝑌𝑌𝑌𝑌

𝑍𝑍∈Γ𝑓𝑓
+(𝑌𝑌)

≤ � 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡

𝑋𝑋∈Γ𝑓𝑓
−(𝑌𝑌)

≤ � 𝑥𝑥𝑓𝑓,𝑌𝑌𝑌𝑌
𝑡𝑡+𝑙𝑙𝑓𝑓,𝑌𝑌𝑌𝑌

𝑍𝑍∈Γ𝑓𝑓
+(𝑌𝑌)

,

𝑡𝑡 ∈ 𝒯𝒯𝑓𝑓,𝑌𝑌,𝑌𝑌 ∈ 𝒩𝒩𝑓𝑓\�𝑘𝑘𝑓𝑓𝑑𝑑, 𝑘𝑘𝑓𝑓𝑎𝑎�,𝑓𝑓 ∈ ℱ  

(6) 

In the foregoing, 𝒯𝒯𝑓𝑓,𝑌𝑌 denotes the set of all times units by which a flight 𝑓𝑓 can reach Node Y from any other node 
along the route of that flight. Spatial continuity constraints force connectivity through a node.   

The third set of constraints is composed of those that are derived from airspace capacity. To formulate the 
problem with capacity constraints, the sets 𝒩𝒩𝑓𝑓

𝑗𝑗+ and 𝒩𝒩𝑓𝑓
𝑗𝑗− are defined for a flight 𝑓𝑓 in the 𝑗𝑗th sector, as the set of 

nodes entering and leaving the 𝑗𝑗th Sector. The sector capacity constraints are given by the following6: 

      �� � � 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡

𝑋𝑋∈Γ𝑓𝑓
−(𝑌𝑌)𝑌𝑌∈𝒩𝒩𝑓𝑓

𝑗𝑗+

− � � 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡

𝑋𝑋∈Γ𝑓𝑓
−(𝑌𝑌)𝑌𝑌∈𝒩𝒩𝑓𝑓

𝑗𝑗−

�
𝑓𝑓∈ℱ

≤ 𝑆𝑆𝑗𝑗𝑡𝑡, 𝑡𝑡 ∈ 𝒯𝒯, 𝑗𝑗 ∈ 𝒥𝒥 (7) 

The foregoing equation counts the number of flights entering Sector 𝑗𝑗 at time 𝑡𝑡, and subtracts from it, the number 
flights leaving the Sector at that time. This number is constrained to be less than the Sector capacity at that time, 𝑆𝑆𝑗𝑗𝑡𝑡, 
for a Sector 𝑗𝑗 ∈ 𝒥𝒥. Similar capacity constraints can be derived for airport arrival and departure capacity, but were not 
used in this work. Mechanisms to include arrival and departure capacity constraints are described in Ref. [1], which 
can also explicitly model scenarios where the arrival and departure capacity constraints are dependent on each other 
due to simultaneous operation on the same runways. 

C. Cost Function  
In the BLO model, the cost 𝐽𝐽 has contributions from different components, depending on the modeling 

requirements of the problem. A comprehensive list is presented in Ref. 6, which not only includes the components 
presented in Ref. 4, but also introduces additional terms for greater flexibility in formulating TFM problems. In this 
work, the number of cancelled flights, overall flight ground delays, and airborne delays were penalized. These three 
cost function components, denoted by 𝐽𝐽cancel, 𝐽𝐽ground, and 𝐽𝐽airborne, are listed as follows: 

      𝐽𝐽cancel = �𝑐𝑐𝑓𝑓,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑓𝑓,𝑘𝑘𝑓𝑓
𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓

𝑑𝑑�
𝑡𝑡

𝑓𝑓∈ℱ

, 𝑡𝑡 = max𝒯𝒯𝑓𝑓,𝑘𝑘𝑓𝑓
𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓

𝑑𝑑� (8) 

 𝐽𝐽ground = −� � 𝑐𝑐𝑓𝑓,𝐺𝐺(𝑡𝑡) �𝑥𝑥
𝑓𝑓,𝑘𝑘𝑓𝑓

𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓
𝑑𝑑�

𝑡𝑡 − 𝑥𝑥
𝑓𝑓,𝑘𝑘𝑓𝑓

𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓
𝑑𝑑�

𝑡𝑡−1 � 
𝑡𝑡∈𝒯𝒯

𝑓𝑓,𝑘𝑘𝑓𝑓
𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓

𝑑𝑑�
𝑓𝑓∈ℱ

 (9) 
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𝐽𝐽airborne = −�� � 𝑐𝑐𝑓𝑓,𝑇𝑇(𝑡𝑡) �𝑥𝑥
𝑓𝑓,𝑝𝑝�𝑘𝑘𝑓𝑓

𝑎𝑎�,𝑘𝑘𝑓𝑓
𝑎𝑎

𝑡𝑡 − 𝑥𝑥
𝑓𝑓,𝑝𝑝�𝑘𝑘𝑓𝑓

𝑎𝑎�,𝑘𝑘𝑓𝑓
𝑎𝑎

𝑡𝑡−1 � 
𝑡𝑡∈𝒯𝒯

𝑓𝑓,𝑝𝑝�𝑘𝑘𝑓𝑓
𝑎𝑎�,𝑘𝑘𝑓𝑓

𝑎𝑎𝑓𝑓∈ℱ

− � 𝑐𝑐𝑓𝑓,𝐺𝐺(𝑡𝑡) �𝑥𝑥
𝑓𝑓,𝑘𝑘𝑓𝑓

𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓
𝑑𝑑�

𝑡𝑡 − 𝑥𝑥
𝑓𝑓,𝑘𝑘𝑓𝑓

𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓
𝑑𝑑�

𝑡𝑡−1 � 
𝑡𝑡∈𝒯𝒯

𝑓𝑓,𝑘𝑘𝑓𝑓
𝑑𝑑,𝑞𝑞�𝑘𝑘𝑓𝑓

𝑑𝑑�

� 

 

(10) 

where 𝑐𝑐𝑓𝑓,𝑇𝑇(𝑡𝑡) = 𝑐𝑐𝑇𝑇 ⋅ �𝑡𝑡 − 𝑟𝑟𝑓𝑓� and 𝑐𝑐𝑓𝑓,𝐺𝐺(𝑡𝑡) = 𝑐𝑐𝐺𝐺 ⋅ �𝑡𝑡 − 𝑑𝑑𝑓𝑓� (with constant 𝑐𝑐𝑇𝑇 and 𝑐𝑐𝐺𝐺) are coefficients such that each 
additional unit of delay from scheduled arrival and departure has a proportionately heavier penalty. Alternative 
formulations include the so-called superlinear cost function Ref. 4 with additional penalty on larger delays. 
Computational experiments described in Ref. 4 have shown that this results in a more equitable distribution of 
delays over the set of flights. It should be noted that although the cost function coefficients can be functions of the 
time unit, they are not functions of the decision variables, and consequently, the resulting cost function is still linear 
as shown in Equation (1). It should also be noted that by virtue of the fact that the present work uses a maximization 
approach (see Equation (1)), all of the cost functions shown in Equations (8) through (10) are multiplied by -1. 

D. Example Problem Description 
In order to motivate a better understanding of the IADS problem formalism using BLO, the problem is 

approached by using an example to develop the constraint equations. The simplicity of the example results in a 
relatively small number of linear constraints that can be solved using enumeration, and insights can be gained on the 
impact of constraints on the solution. 

For the example problem, two flights are assumed. For demonstration purposes, only the surface routes (gate to 
runway threshold) of the aircrafts are assumed. The technique presented here and be extended to include the arrival, 
departure and enroute operations, without loss of generality. The link-node model for both flights (shown in red and 
green) is depicted in Figure 1. 

 

 
Figure 1. Node-Link Layout of the Two Flights 

 
1. Constraint Generation using BLO Formalism 

Let ℱ = {AAL1011 , AAL445 } be the set of flights in the simulation; 𝑓𝑓1 ={AAL1011} and 𝑓𝑓2 ={AAL445} will 
be referred to as Flight 1 and Flight 2 respectively. The set of nodes for Flight 1 is given by 𝒩𝒩1 = {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐹𝐹,𝐺𝐺} and 
for Flight 2 is given by 𝒩𝒩2 = {𝐴𝐴,𝐷𝐷,𝐸𝐸,𝐹𝐹,𝐺𝐺} (see Figure 1). The trajectories for Flight 1 and Flight 2 are defined by 
the set of arcs connecting nodes that constitute their path. In other words, 𝒜𝒜1 = {(𝐴𝐴,𝐵𝐵), (𝐵𝐵,𝐶𝐶), (𝐶𝐶,𝐹𝐹), (𝐹𝐹,𝐺𝐺)} and 
𝒜𝒜2 = {(𝐴𝐴,𝐷𝐷), (𝐷𝐷,𝐸𝐸), (𝐸𝐸,𝐹𝐹), (𝐹𝐹,𝐺𝐺)}. Since each flight has only one possible route, the scheduled route sets are 
given by 𝒜𝒜1

∗ = 𝒜𝒜1 and 𝒜𝒜2
∗ = 𝒜𝒜2. Keeping in mind the BLO formalism, the first node / airport boundary for both 
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flights is Node A shown in Figure 1. Forward connectivity is given by Γ1+(𝐴𝐴) = 𝐵𝐵, Γ1+(𝐵𝐵) = 𝐶𝐶, Γ1+(𝐶𝐶) = 𝐹𝐹, 
Γ1+(𝐹𝐹) = 𝐺𝐺, Γ1+(𝐺𝐺) = ∅, Γ2+(𝐴𝐴) = 𝐷𝐷, Γ2+(𝐷𝐷) = 𝐸𝐸, Γ2+(𝐸𝐸) = 𝐹𝐹, Γ2+(𝐹𝐹) = 𝐺𝐺, Γ2+(𝐺𝐺) = ∅. Similarly, reverse 
connectivity is given by Γ1−(𝐴𝐴) = ∅, Γ1−(𝐵𝐵) = 𝐴𝐴, Γ1−(𝐶𝐶) = 𝐵𝐵, Γ1−(𝐹𝐹) = 𝐶𝐶, Γ1−(𝐺𝐺) = 𝐹𝐹, Γ2−(𝐴𝐴) = ∅, Γ2−(𝐷𝐷) = 𝐴𝐴, 
Γ2−(𝐸𝐸) = 𝐷𝐷, Γ2−(𝐹𝐹) = 𝐸𝐸, Γ2−(𝐺𝐺) = 𝐹𝐹. 

The transit time for both flights along the links which correspond to their respective routes are equal to 1 time 
unit, except for Flight 2 in Arc AD, which requires 2 time units. Departure times (i.e. arrival at Node A) are both at 
1 time unit, i.e. 𝑑𝑑1 = 𝑑𝑑2 = 1. The transit times are then given as follows: 

 

 
𝑙𝑙1,𝐴𝐴𝐴𝐴 = 𝑙𝑙1̅,𝐴𝐴𝐴𝐴 = 𝑙𝑙1,𝐴𝐴𝐴𝐴 = 1 
𝑙𝑙1,𝐵𝐵𝐵𝐵 = 𝑙𝑙1̅,𝐵𝐵𝐵𝐵 = 𝑙𝑙1,𝐵𝐵𝐵𝐵 = 1 
𝑙𝑙1,𝐶𝐶𝐶𝐶 = 𝑙𝑙1̅,𝐶𝐶𝐶𝐶 = 𝑙𝑙1,𝐶𝐶𝐶𝐶 = 1 
𝑙𝑙1,𝐹𝐹𝐹𝐹 = 𝑙𝑙1̅,𝐹𝐹𝐹𝐹 = 𝑙𝑙1,𝐹𝐹𝐹𝐹 = 1 
𝑙𝑙2,𝐴𝐴𝐴𝐴 = 𝑙𝑙2̅,𝐴𝐴𝐴𝐴 = 𝑙𝑙2,𝐴𝐴𝐴𝐴 = 2 
𝑙𝑙2,𝐷𝐷𝐷𝐷 = 𝑙𝑙2̅,𝐷𝐷𝐷𝐷 = 𝑙𝑙2,𝐷𝐷𝐷𝐷 = 1 
𝑙𝑙2,𝐸𝐸𝐸𝐸 = 𝑙𝑙2̅,𝐸𝐸𝐸𝐸 = 𝑙𝑙2,𝐸𝐸𝐸𝐸 = 1 
𝑙𝑙2,𝐹𝐹𝐹𝐹 = 𝑙𝑙2̅,𝐹𝐹𝐹𝐹 = 𝑙𝑙2,𝐹𝐹𝐹𝐹 = 1 

 

(11) 

Flight 1 and Flight 2 are allowed to delay their departure by up to 2 time units. Any additional delay will result in 
flight cancellation. Given that 𝑑𝑑1 = 1, the set of feasible time units during which Flight 1 can be at Node A is given 
by {1,2,3}. In other words, if a Flight 1 has not departed from Node A by the time unit 3, then it is considered 
canceled. Feasible time units for arcs AB, BC, CF, and CG and nodes B, C, F, and G, can be obtained using the 
initial feasible set and the transit times shown in Equations (11).  

 

 
𝒯𝒯1,𝐴𝐴
∗ = {1,2,3} 

𝒯𝒯1,𝐴𝐴𝐴𝐴
∗ = �𝑡𝑡 + 𝑙𝑙1,𝐴𝐴𝐴𝐴|𝑡𝑡 ∈ 𝒯𝒯1,𝐴𝐴

∗ �⋃�𝑡𝑡 + 𝑙𝑙1,𝐴𝐴𝐴𝐴|𝑡𝑡 ∈ 𝒯𝒯1,𝐴𝐴
∗ �⋃�𝑡𝑡 + 𝑙𝑙1̅,𝐴𝐴𝐴𝐴|𝑡𝑡 ∈ 𝒯𝒯1,𝐴𝐴

∗ � = {2,3,4} 
𝒯𝒯1,𝐵𝐵
∗ = 𝒯𝒯1,𝐴𝐴𝐴𝐴

∗ = {2,3,4} 
𝒯𝒯1,𝐵𝐵𝐵𝐵
∗ = �𝑡𝑡 + 𝑙𝑙1,𝐵𝐵𝐵𝐵|𝑡𝑡 ∈ 𝒯𝒯1,𝐵𝐵

∗ �⋃�𝑡𝑡 + 𝑙𝑙1,𝐵𝐵𝐵𝐵|𝑡𝑡 ∈ 𝒯𝒯1,𝐵𝐵
∗ �⋃�𝑡𝑡 + 𝑙𝑙1̅,𝐵𝐵𝐵𝐵|𝑡𝑡 ∈ 𝒯𝒯1,𝐵𝐵

∗ � = {3,4,5} 
𝒯𝒯1,𝐶𝐶
∗ = 𝒯𝒯1,𝐵𝐵𝐵𝐵

∗ = {3,4,5} 
𝒯𝒯1,𝐶𝐶𝐶𝐶
∗ = �𝑡𝑡 + 𝑙𝑙1,𝐶𝐶𝐶𝐶|𝑡𝑡 ∈ 𝒯𝒯1,𝐶𝐶

∗ �⋃�𝑡𝑡 + 𝑙𝑙1,𝐶𝐶𝐶𝐶|𝑡𝑡 ∈ 𝒯𝒯1,𝐶𝐶
∗ �⋃�𝑡𝑡 + 𝑙𝑙1̅,𝐶𝐶𝐶𝐶|𝑡𝑡 ∈ 𝒯𝒯1,𝐶𝐶

∗ � = {4,5,6} 
𝒯𝒯1,𝐹𝐹
∗ = 𝒯𝒯1,𝐶𝐶𝐶𝐶

∗ = {4,5,6} 
𝒯𝒯1,𝐹𝐹𝐹𝐹
∗ = �𝑡𝑡 + 𝑙𝑙1,𝐹𝐹𝐹𝐹|𝑡𝑡 ∈ 𝒯𝒯1,𝐹𝐹

∗ �⋃�𝑡𝑡 + 𝑙𝑙1,𝐹𝐹𝐹𝐹|𝑡𝑡 ∈ 𝒯𝒯1,𝐹𝐹
∗ �⋃�𝑡𝑡 + 𝑙𝑙1̅,𝐹𝐹𝐹𝐹|𝑡𝑡 ∈ 𝒯𝒯1,𝐹𝐹

∗ � = {5,6,7} 
 

(12) 

In the foregoing equation, the sets of feasible times are used to define the BLO variables which represent Flight 1. In 
other words, the complete trajectory of Flight 1 can be specified using 12 binary variables 
𝑥𝑥1,𝐴𝐴𝐴𝐴
2 , 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥1,𝐴𝐴𝐴𝐴
4 , 𝑥𝑥1,𝐵𝐵𝐵𝐵

3 , 𝑥𝑥1,𝐵𝐵𝐵𝐵
4 , 𝑥𝑥1,𝐵𝐵𝐵𝐵

5 , 𝑥𝑥1,𝐶𝐶𝐶𝐶
4 , 𝑥𝑥1,𝐶𝐶𝐶𝐶

5 , 𝑥𝑥1,𝐶𝐶𝐶𝐶
6 , 𝑥𝑥1,𝐹𝐹𝐹𝐹

5 , 𝑥𝑥1,𝐹𝐹𝐹𝐹
6 , 𝑥𝑥1,𝐹𝐹𝐹𝐹

7 . Similarly feasible time set for Flight 2 can 
be found which is completely specified by 12 binary variables whch are given by,   
𝑥𝑥2,𝐴𝐴𝐴𝐴
3 ,𝑥𝑥2,𝐴𝐴𝐴𝐴

4 , 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 ,𝑥𝑥2,𝐷𝐷𝐷𝐷

4 ,𝑥𝑥2,𝐷𝐷𝐷𝐷
5 , 𝑥𝑥2,𝐷𝐷𝐷𝐷

6 , 𝑥𝑥2,𝐸𝐸𝐸𝐸
5 , 𝑥𝑥2,𝐸𝐸𝐸𝐸

6 ,𝑥𝑥2,𝐸𝐸𝐸𝐸
7 , 𝑥𝑥2,𝐹𝐹𝐹𝐹

6 , 𝑥𝑥2,𝐹𝐹𝐹𝐹
7 , 𝑥𝑥2,𝐹𝐹𝐹𝐹

8 . 
The set of time units over which optimization takes place is 𝒯𝒯 = {1,2,3,4,5,6,7,8}. Keeping in mind the BLO 

formalism, set 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋 is defined for a flight 𝑓𝑓 and node pair X and Y, which is the smallest continuous interval 
containing set 𝒯𝒯𝑓𝑓,𝑋𝑋𝑋𝑋

∗ . Similarly, set 𝒯𝒯𝑓𝑓,𝑋𝑋 is the smallest continuous interval containing  𝒯𝒯𝑓𝑓,𝑋𝑋
∗  for a node X. In the 

example considered in this section, the two sets are identical because each flight has only one possible route. The 
use of feasible time sets is equivalent to the process of constraint elimination performed by sophisticated linear 
programming codes. For example, the knowledge that a variable cannot have non-zero value at any time instant 
prior to the earliest feasible time instant is implicitly recognized in this approach. 

For the present problem, the temporal constraints for Flight 1 and 2 are given by the following two sets of 
equations: 
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𝑥𝑥1,𝐴𝐴𝐴𝐴
2 ≤ 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 𝑥𝑥1,𝐴𝐴𝐴𝐴
4  

𝑥𝑥1,𝐵𝐵𝐵𝐵
3 ≤ 𝑥𝑥1,𝐵𝐵𝐵𝐵

4 ≤ 𝑥𝑥1,𝐵𝐵𝐵𝐵
5  

𝑥𝑥1,𝐶𝐶𝐶𝐶
4 ≤ 𝑥𝑥1,𝐶𝐶𝐶𝐶

5 ≤ 𝑥𝑥1,𝐶𝐶𝐶𝐶
6  

𝑥𝑥1,𝐹𝐹𝐹𝐹
5 ≤ 𝑥𝑥1,𝐹𝐹𝐹𝐹

6 ≤ 𝑥𝑥1,𝐹𝐹𝐹𝐹
7  

(13) 

 

𝑥𝑥2,𝐴𝐴𝐴𝐴
3 ≤ 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 ≤ 𝑥𝑥2,𝐴𝐴𝐴𝐴
5  

𝑥𝑥2,𝐷𝐷𝐷𝐷
4 ≤ 𝑥𝑥2,𝐷𝐷𝐷𝐷

5 ≤ 𝑥𝑥2,𝐷𝐷𝐷𝐷
6  

𝑥𝑥2,𝐸𝐸𝐸𝐸
5 ≤ 𝑥𝑥2,𝐸𝐸𝐸𝐸

6 ≤ 𝑥𝑥2,𝐸𝐸𝐸𝐸
7  

𝑥𝑥2,𝐹𝐹𝐹𝐹
6 ≤ 𝑥𝑥2,𝐹𝐹𝐹𝐹

7 ≤ 𝑥𝑥2,𝐹𝐹𝐹𝐹
8  

(14) 

The spatial continuity constraints for Flight 1 are given by, 

 
𝑥𝑥1,𝐴𝐴𝐴𝐴
𝑖𝑖 = 𝑥𝑥1,𝐵𝐵𝐵𝐵

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(2,3), (3,4), (4,5)} 
𝑥𝑥1,𝐵𝐵𝐵𝐵
𝑖𝑖 = 𝑥𝑥1,𝐶𝐶𝐶𝐶

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(3,4), (4,5), (5,6)} 
𝑥𝑥1,𝐶𝐶𝐶𝐶
𝑖𝑖 = 𝑥𝑥1,𝐹𝐹𝐹𝐹

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(4,5), (5,6), (6,7)} 
(15) 

For Flight 2 similarly, 

 
𝑥𝑥2,𝐴𝐴𝐴𝐴
𝑖𝑖 = 𝑥𝑥2,𝐷𝐷𝐷𝐷

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(3,4), (4,5), (5,6)} 
𝑥𝑥2,𝐷𝐷𝐷𝐷
𝑖𝑖 = 𝑥𝑥2,𝐸𝐸𝐸𝐸

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(4,5), (5,6), (6,7)} 
𝑥𝑥2,𝐸𝐸𝐸𝐸
𝑖𝑖 = 𝑥𝑥2,𝐹𝐹𝐹𝐹

𝑗𝑗 ,∀(𝑖𝑖, 𝑗𝑗) ∈ {(5,6), (6,7), (7,8)} 
(16) 

Using Equations (13), (14), (15), (16), it may be observed that the entire problem is determined by 6 variables 
𝑥𝑥1,𝐴𝐴𝐴𝐴
2 , 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥1,𝐴𝐴𝐴𝐴
4 , 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 , 𝑥𝑥2,𝐴𝐴𝐴𝐴

5  and the following constraints: 

 

 
𝑥𝑥1,𝐴𝐴𝐴𝐴
2 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 0 
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 ≤ 0 
𝑥𝑥2,𝐴𝐴𝐴𝐴
3 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 ≤ 0 
𝑥𝑥2,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

5 ≤ 0 
𝑥𝑥1,𝐴𝐴𝐴𝐴
2 ∈ {0,1} 
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 ∈ {0,1} 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 ∈ {0,1} 
𝑥𝑥2,𝐴𝐴𝐴𝐴
3 ∈ {0,1} 
𝑥𝑥2,𝐴𝐴𝐴𝐴
4 ∈ {0,1} 
𝑥𝑥2,𝐴𝐴𝐴𝐴
5 ∈ {0,1} 

(17) 

2. Linear Relaxation of the BLO Formulation 
For the example studied, it is straightforward to demonstrate that the linear relaxation is valid. In other words, 

constraints for the first flight, given by 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 0, 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 ≤ 0, together with 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 , 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥1,𝐴𝐴𝐴𝐴
4 ∈ {0,1} 

are relaxed into the following inequalities: 
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𝑥𝑥1,𝐴𝐴𝐴𝐴
2 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 0 
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 ≤ 0 
0 ≤ 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 ≤ 1 
0 ≤ 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 1 
0 ≤ 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 ≤ 1 
 

(18) 

The bounds on the variables define a 3-dimensional cube as shown in Figure 2. The relaxed problem by is 
bounded by construction, therefore, an unbounded solution obtained from any solver (e.g. simplex) is not expected. 
The extreme points are clearly the 8 corners of the cube, viz. (0,0,0), (0,0,1), … , (1,1,1). 

 
Figure 2. Feasible Region obtained from BLO Variable Bounds 

 
(a) 

 
(b) 

Figure 3. Modification of Feasibility Space with 𝒙𝒙𝟏𝟏,𝑨𝑨𝑨𝑨
𝟐𝟐 − 𝒙𝒙𝟏𝟏,𝑨𝑨𝑨𝑨

𝟑𝟑 ≤ 𝟎𝟎 

The constraint 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 ≤ 0 is now applied to the feasibility space. The plane 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 = 0 is shown in 
red in Figure 3(a). Any point to the left of the plane satisfies the constraint, and the modified feasibility space is 
shown in Figure 3(b). Application of this constraint removes 2 extreme points: (1,0,0) and (1,0,1). 

After processing all the constraints, the final feasible region has 4 extreme points: (0,0,0), (0,0,1), (0,1,1), and 
(1,1,1) and the relaxation of the binary problem into a bounded LP is valid. In general, the relaxation holds for large 
problems composed of BLO variables. If there are 𝑘𝑘 BLO variables, the initial feasibility region is a 𝑘𝑘-dimensional 
hypercube since each BLO variable is bounded in the range [0,1] after relaxation. Every constraint in an individual 
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flight’s problem is of the form 𝑎𝑎⊤𝑥𝑥 ≤ 0 or 𝑎𝑎⊤𝑥𝑥 = 0. In computational experience, the constraint coefficients are +1  
or −1, which results in hyperplanes which pass through one of the corner points of the hypercube. However, it is 
possible that coupling constraints between flights can result in new corner points which have a non-binary 
component. Bertsimas and Stock-Patterson1 have noted that the linear relaxation holds “almost everywhere”, and 
Rios and Ross3 have noted that the relaxation strength increases when decomposition methods are used. 
3. Cost Function  

For the example problem, the cancellation cost coefficient is set to a large value (100) to ensure that delays are 
preferred to flight cancellations. It follows that, 

      𝐽𝐽cancel = 100𝑥𝑥1,𝐴𝐴𝐴𝐴
4 + 100𝑥𝑥2,𝐴𝐴𝐴𝐴

5  (19) 
The foregoing cost function favors scenarios where the flight has departed by its last feasible time unit of departure. 
It is possible to enforce non-cancellation by using an equality constraint of the form 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 = 1, however, this 
approach can impact the availability of a basic feasible solution to the LP, since all the BLO variables cannot be 
arbitrarily set to 0 in order to ensure coupling constraints are not violated. 

In the present example, the airborne delay cost is not used. This is because the minimum, maximum, and 
scheduled transit times in a link are identical and a flight will not be able to add additional delays beyond the first 
link. Therefore, all delays are captured in the ‘ground’ segment of the problem, i.e. AB for Flight 1, and AD for 
Flight 2.  Ground delay cost with 𝑐𝑐𝐺𝐺 = 1 is given as follows: 

 

𝐽𝐽ground = − � (𝑡𝑡 − 2)�𝑥𝑥1,𝐴𝐴𝐴𝐴
𝑡𝑡 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

𝑡𝑡−1 � 
𝑡𝑡∈{2,3,4}

− � (𝑡𝑡 − 3)�𝑥𝑥2,𝐴𝐴𝐴𝐴
𝑡𝑡 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

𝑡𝑡−1 � 
𝑡𝑡∈{3,4,5}

= −�𝑥𝑥1,𝐴𝐴𝐴𝐴
3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 � − 2�𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 � − �𝑥𝑥2,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 �
− 2�𝑥𝑥2,𝐴𝐴𝐴𝐴

5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 �

= −2𝑥𝑥1,𝐴𝐴𝐴𝐴
4 + 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 + 𝑥𝑥1,𝐴𝐴𝐵𝐵
2 − 2𝑥𝑥2,𝐴𝐴𝐴𝐴

5 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3  

(20) 

 
The total cost function, given by adding the cancellation and ground delay cost components obtained from 

Equation (19) and (20) is given by 

 𝐽𝐽 = 98𝑥𝑥1,𝐴𝐴𝐴𝐴
4 + 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 + 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 + 98𝑥𝑥2,𝐴𝐴𝐴𝐴

5 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3  (21) 

E. Coupling Constraints: Separation and Capacity 
The case is now considered where a separation is desired between the two flights at the merge point 𝐹𝐹. Let 𝑡𝑡1 

and 𝑡𝑡2 denote the time units at which Flight 1 and Flight 2 arrive at Node F along their respective trajectories. From 
Equation (3) it can be shown that: 

 𝑡𝑡1 = ⋯+ 3(0 − 0) + 4�𝑥𝑥1,𝐶𝐶𝐶𝐶
4 − 0� + 5�𝑥𝑥1,𝐶𝐶𝐶𝐶

5 − 𝑥𝑥1,𝐶𝐶𝐶𝐶
4 � + 6�𝑥𝑥1,𝐶𝐶𝐶𝐶

6 − 𝑥𝑥1,𝐶𝐶𝐶𝐶
5 �

+ 7�𝑥𝑥1,𝐶𝐶𝐶𝐶
6 − 𝑥𝑥1,𝐶𝐶𝐶𝐶

6 � + ⋯ 
(22) 

In the foregoing, since the set of feasible times at which Flight 1 can arrive at Node F is given by 𝒯𝒯1,𝐹𝐹
∗ = {4,5,6}, 

𝑥𝑥1,𝐶𝐶𝐶𝐶
𝑡𝑡 = 0 when 𝑡𝑡 < 4 (Flight 1 cannot arrive at F before time unit 4), and 𝑥𝑥1,𝐶𝐶𝐶𝐶

𝑡𝑡 = 𝑥𝑥1,𝐶𝐶𝐶𝐶
6  when 𝑡𝑡 > 6 (if Flight 1 

has/has not arrive at F by time unit 6, it can/not have arrived by any time after that). Using variable elimination 
discussed in Section II.D.1, the foregoing equation can be simplified to the following: 

 𝑡𝑡1 = 6𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴
2  (23) 

Similarly, time of arrival of Flight 2 at Node F can be written as follows:  

 𝑡𝑡2 = 7𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 − 𝑥𝑥2,𝐴𝐴𝐴𝐴
3  (24) 

1. Reformulation of Separation Constraint as a Capacity Constraint 
If a separation of 2 time units is desired, then the following constraint is required: 

 
|𝑡𝑡1 − 𝑡𝑡2| ≥ 2 

or, ��6𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 − 𝑥𝑥1,𝐴𝐴𝐴𝐴
2 � − �7𝑥𝑥2,𝐴𝐴𝐴𝐴

5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 �� ≥ 2 (25) 

However, the foregoing equation is a non-convex constraint and cannot be implemented as a linear program. 
Therefore a sequencing heuristic must be imposed in order to make the constraint convex. In other words, only one 
of 𝑡𝑡1 − 𝑡𝑡2 ≥ 2 and 𝑡𝑡2 − 𝑡𝑡1 ≥ 2 can be imposed, and this implies that a priori knowledge of whether Flight 1 arrives 
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before or after Flight 2 is available. This poses a huge disadvantage and may lead to suboptimal solutions. A more 
serious shortcoming of the foregoing constraint is the loss of the validity of the linear relaxation, which can be easily 
seen if the foregoing problem is solved using enumeration. However, solving the linear relaxation using either 
simplex or interior point methods shows that multiple solutions exist for this problem, with identical costs. For 
instance, 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 = 1, 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 = 1, and 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 = 1, and 𝑥𝑥2,𝐴𝐴𝐴𝐴
3 = 𝑡𝑡, 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 = 1 − 𝑡𝑡, and 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 = 1, with 𝑡𝑡 ∈ [0,0.5] are all 

valid solutions to the foregoing problem, each with a cost of 𝐽𝐽 = 199. 

 
Figure 4. Modeling Separation Constraint as a Capacity Constraint 

An alternative approach is to impose the separation constraint as a capacity constraint, which is achieved by 
modeling a sector / volume of airspace superimposed on the flight trajectories. Separation can be imposed on a 
single route or at merge points, and the second case is considered for generality. A merge point for two routes is 
depicted in Figure 4. The two routes merge at Node W, and the preceding node for the first route is X, and that for 
the second route is Z. Consider a desired separation of 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 time units. It is assumed without loss of generality that 
the transit time for Flight 1 on Route 1 on the arc connecting Node X and W is greater than 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠. Conversely, Flight 
2 on Route 2 requires a flight time from Node Z to Node W which is less than 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠. A sector (depicted in red) is now 
created such that the point of entry into the sector for Flight 1 is given by Node X′ and that for Flight 2 is given by 
Node Y′. It should be noted that  

 

𝑙𝑙1,𝑋𝑋′𝑊𝑊 = 𝑙𝑙1,𝑋𝑋′𝑊𝑊 = 𝑙𝑙1̅,𝑋𝑋′𝑊𝑊 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 
𝑙𝑙1,𝑋𝑋𝑋𝑋′ = 𝑙𝑙1,𝑋𝑋𝑋𝑋 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 
𝑙𝑙2,𝑌𝑌′𝑍𝑍 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑙𝑙2,𝑍𝑍𝑍𝑍 

𝑙𝑙2,𝑌𝑌𝑌𝑌′ = 𝑙𝑙2,𝑌𝑌𝑌𝑌 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑙𝑙2,𝑍𝑍𝑍𝑍 

(26) 

To simplify analysis, it is assumed that the maximum and minimum transit times are identical to the nominal 
transit time inside the sector, and the maximum and minimum transit times for the partial segment outside the sector 
is adjusted such that they are at least zero. 

In the present example, 𝑙𝑙1,𝐶𝐶𝐶𝐶 and 𝑙𝑙2,𝐸𝐸𝐸𝐸 are both equal to 1, therefore, Nodes C, E, and F constitute the boundary 
nodes for the sector. In line with the BLO formalism, let 𝑆𝑆 denote this sector, and 𝒩𝒩𝑆𝑆 = {𝐶𝐶,𝐸𝐸,𝐹𝐹} denote the set of 
nodes which belong to this sector. The sets 𝒩𝒩1

𝑆𝑆 = {𝐶𝐶,𝐹𝐹} and 𝒩𝒩2
𝑆𝑆 = {𝐸𝐸,𝐹𝐹} denote the set of nodes in sector 𝑆𝑆 for 

Flight 1 and Flight 2, respectively. The sets of incoming and outgoing border nodes are defined as follows: 

 
𝒩𝒩𝑓𝑓

𝑗𝑗+ = �𝑚𝑚|𝑛𝑛 ∈ 𝒩𝒩𝑓𝑓
𝑗𝑗,𝑚𝑚 = Γ𝑓𝑓−(𝑛𝑛) ∉ 𝒩𝒩𝑓𝑓

𝑗𝑗� 
𝒩𝒩𝑓𝑓

𝑗𝑗− = �𝑛𝑛|𝑚𝑚′ ∈ 𝒩𝒩𝑓𝑓
𝑗𝑗,𝑚𝑚′ = Γ𝑓𝑓+(𝑛𝑛) ∉ 𝒩𝒩𝑓𝑓

𝑗𝑗� 
(27) 

In the present example, 𝒩𝒩1
𝑆𝑆+ = {𝐶𝐶}, 𝒩𝒩1

𝑆𝑆− = {𝐺𝐺},  𝒩𝒩2
𝑆𝑆+ = {𝐸𝐸}, 𝒩𝒩2

𝑆𝑆− = {𝐺𝐺}. The sector capacity constraint is given 
by the following expression: 
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      �� � � 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡

𝑋𝑋∈Γ𝑓𝑓
−(𝑌𝑌)𝑌𝑌∈𝒩𝒩𝑓𝑓

𝑗𝑗+

− � � 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋
𝑡𝑡

𝑋𝑋∈Γ𝑓𝑓
−(𝑌𝑌)𝑌𝑌∈𝒩𝒩𝑓𝑓

𝑗𝑗−

�
𝑓𝑓∈ℱ

≤ 𝑆𝑆𝑗𝑗𝑡𝑡, 𝑡𝑡 ∈ 𝒯𝒯, 𝑗𝑗 ∈ 𝒥𝒥 (28) 

Where 𝑆𝑆𝑗𝑗𝑡𝑡 is the capacity of the 𝑗𝑗th sector at time 𝑡𝑡 in the simulation. In order to enforce separation at Node F, only 
one flight is permitted in the sector at all times, therefore 𝑆𝑆𝑗𝑗𝑡𝑡 = 1. The sector capacity inequalities for 𝒯𝒯 =
{1,2,3,4,5,6,7,8} are as follows: 

      𝑥𝑥1,𝐵𝐵𝐵𝐵
𝑡𝑡 − 𝑥𝑥1,𝐹𝐹𝐹𝐹

𝑡𝑡 + 𝑥𝑥2,𝐷𝐷𝐷𝐷
𝑡𝑡 − 𝑥𝑥2,𝐹𝐹𝐹𝐹

𝑡𝑡 ≤ 1, 𝑡𝑡 ∈ [1,8] (29) 
Using the feasible time interval information ( given in Equation (12) for Flight 1 and similarly can be calculated for 
Flight 2), the foregoing constraints reduce to the following: 

      

 
𝑥𝑥1,𝐵𝐵𝐵𝐵
3 ≤ 1 

𝑥𝑥1,𝐵𝐵𝐵𝐵
4 + 𝑥𝑥2,𝐷𝐷𝐷𝐷

4 ≤ 1 
𝑥𝑥1,𝐵𝐵𝐵𝐵
5 − 𝑥𝑥1,𝐹𝐹𝐹𝐹

5 + 𝑥𝑥2,𝐷𝐷𝐷𝐷
5 ≤ 1 

𝑥𝑥1,𝐵𝐵𝐵𝐵
5 − 𝑥𝑥1,𝐹𝐹𝐹𝐹

6 + 𝑥𝑥2,𝐷𝐷𝐷𝐷
6 − 𝑥𝑥2,𝐹𝐹𝐹𝐹

6 ≤ 1 
𝑥𝑥1,𝐵𝐵𝐵𝐵
5 − 𝑥𝑥1,𝐹𝐹𝐹𝐹

7 + 𝑥𝑥2,𝐷𝐷𝐷𝐷
6 − 𝑥𝑥2,𝐹𝐹𝐹𝐹

7 ≤ 1 
𝑥𝑥1,𝐵𝐵𝐵𝐵
5 − 𝑥𝑥1,𝐹𝐹𝐹𝐹

7 + 𝑥𝑥2,𝐷𝐷𝐷𝐷
6 − 𝑥𝑥2,𝐹𝐹𝐹𝐹

8 ≤ 1 
 

(30) 

The first of the foregoing inequalities is always satisfied due to the linear relaxation. By utilizing variable 
elimination, Equation (30) simplifies to the following: 

      

 
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 ≤ 1 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 ≤ 1 

𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 ≤ 1 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 ≤ 1 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

5 ≤ 1 
 

(31) 

In the foregoing, the fourth constraint reduces to a variable bound which is always satisfied due to the linear 
relaxation, and the fifth constraint is redundant. Therefore, the final form of the sector capacity constraint is the 
following: 

      
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 ≤ 1 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐵𝐵

2 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 ≤ 1 

𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 ≤ 1 
(32) 

It should be noted that the non-binary solution observed when posing the separation constraint as a ≥-type 
constraint, given by 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 = 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 = 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 = 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 = 1, 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 = 𝑡𝑡, 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 = 1 − 𝑡𝑡 satisfies the second and third 

inequalities of the foregoing, but only 𝑡𝑡 = 0 satisfies the first inequality. 
While the capacity constraint can be imposed on the optimization directly, it is often beneficial to pose the 

inequality as a “soft” constraint with an associated penalty, so that flights are canceled only if the penalty of 
constraint violation is very high. This allows flexibility in order to model scenarios where a small amount of 
constraint violation can be tolerated under extreme circumstances which would otherwise cancel flights. Moreover, 
in the specific example of linear programs which are generated from TFM scenarios, a basic feasible solution 
consisting of all variables set to zero exists, which corresponds to the case where all flights are canceled. However, 
this solution can violate the coupling / separation constraints when posed in “hard” form.  

When a basic feasible solution to the LP is not available by intuition, a common technique is to use a two-phase 
simplex algorithm where the first phase penalizes artificial variables in order to generate a feasible solution which 
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satisfies the constraints of the problem with no regard for optimality. Thereafter, the second phase iterates upon the 
feasible solution to obtain an optimal solution.  

The second approach, known as the “big M” method is the approach followed here. In this approach, artificial 
variables are added to each constraint, and penalized heavily in comparison with the other variables in the problem. 
Let 𝑠𝑠11, 𝑠𝑠12, and 𝑠𝑠13 denote surplus variables and 𝑠𝑠14, 𝑠𝑠15, 𝑠𝑠16 denote slack variables for the capacity constraint 
which can be converted to equalities: 

      
𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 − 𝑠𝑠11 + 𝑠𝑠14 = 1 
𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 − 𝑠𝑠12 + 𝑠𝑠15 = 1 

𝑥𝑥1,𝐴𝐴𝐴𝐴
4 − 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴
5 − 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 − 𝑠𝑠13 + 𝑠𝑠16 = 1 
(33) 

When 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 ≤ 1, 𝑠𝑠11 = 0 and 𝑠𝑠14 = 1 − �𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 �. If 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 + 𝑥𝑥2,𝐴𝐴𝐴𝐴

3 > 1, then 𝑠𝑠11 = �𝑥𝑥1,𝐴𝐴𝐴𝐴
3 +

𝑥𝑥2,𝐴𝐴𝐴𝐴
3 � − 1, and 𝑠𝑠14 = 0. Therefore, if the surplus variable is penalized, the capacity violation will be minimized. 

Similar conclusions can be drawn for the second and third capacity constraints. Consequently, let 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠11 + 𝑠𝑠12 + 𝑠𝑠13) denote the cost of capacity violation and let the total cost be modified to 𝐽𝐽′ = 𝐽𝐽 +
𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . It can be easily observed using enumeration that if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 200 then the 
optimal cost  𝐽𝐽′ = 199, and the optimal solution is given by, 𝑥𝑥1,𝐴𝐴𝐴𝐴

2 = 1, 𝑥𝑥1,𝐴𝐴𝐴𝐴
3 = 1, 𝑥𝑥1,𝐴𝐴𝐴𝐴

4 = 1, 𝑥𝑥2,𝐴𝐴𝐴𝐴
3 = 0, 𝑥𝑥2,𝐴𝐴𝐴𝐴

4 =
1 and 𝑥𝑥2,𝐴𝐴𝐴𝐴

5 = 1. Furthermore, because the separation constraint has been imposed as a capacity constraint, the 
linear relaxation is still valid4 and a simplex-based solver will result in binary integer solutions. Moreover, a 
sequencing heuristic is no longer required. 

III. Solution Methodology 
Prior work described in Ref. [3] shows that the BSP model exhibits the so-called primal block structure8, which 

is shown Figure 5. This is also known as the Dantzig-Wolfe decomposition of the constraint space9. This structure is 
also exhibited by the BLO model. The implementation details on parallel and high-performance computers are 
discussed in the following subsections.  

 

Figure 5. Primal Block Angular Structure of the TFM Constraint Matrix 

A. Dantzig-Wolfe Structure 
With reference to Figure 5, the constraints of the LP can be divided into master problem blocks 𝐷𝐷1 through 𝐷𝐷𝑛𝑛, 

and sub-problem blocks 𝐹𝐹1 through 𝐹𝐹𝑛𝑛, where 𝑛𝑛 is the number of flights in the simulation.  In other words, the LP 
can be written in the following form: 

      

min 𝑐𝑐1⊤𝑥𝑥1 + 𝑐𝑐2⊤𝑥𝑥2 + ⋯𝑐𝑐𝑛𝑛⊤𝑥𝑥𝑛𝑛 

𝐷𝐷1𝑥𝑥1 + 𝐷𝐷2𝑥𝑥2 + ⋯+ 𝐷𝐷𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝐷𝐷 

𝐹𝐹1𝑥𝑥1 = 𝑏𝑏𝐹𝐹1 

𝐹𝐹2𝑥𝑥2 = 𝑏𝑏𝐹𝐹2 

(34) 
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⋮ 

𝐹𝐹𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝐹𝐹𝑛𝑛 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ≥ 0 
where the variable set 𝑥𝑥𝑓𝑓 consist of all variables 𝑥𝑥𝑓𝑓,𝑋𝑋𝑋𝑋

𝑡𝑡  for a flight 𝑓𝑓 ∈ ℱ in the simulation. The master problem 
constraints composed of block matrices 𝐷𝐷1 through 𝐷𝐷𝑛𝑛 consists of constraints that relate the variables of multiple 
flights, and are composed of capacity constraints shown in Equation (7). The sub-problem constraints composed of 
block matrices 𝐹𝐹1 through 𝐹𝐹𝑛𝑛 consist of spatio-temporal constraints of individual flights and only relate variables 
associated with a single flight each, as shown in Equations (5) and (6). Note that in the foregoing equation the 
general LP form is assumed for the optimization problem, in which all constraints are equality constraints and 
inequalities are converted to equalities using slack, surplus, and artificial variables. 

Let 𝑃𝑃𝑓𝑓 = �𝑥𝑥𝑓𝑓�𝐹𝐹𝑓𝑓𝑥𝑥𝑓𝑓 = 𝑏𝑏𝑓𝑓 , 𝑥𝑥𝑓𝑓 ≥ 0�. This set denotes the feasible values for the variables for the 𝑓𝑓th flight and can 
be rewritten as a convex combination of its extreme points and rays. In the context of the BLO formulation, the 
feasible region is bounded since all variables are bounded in the region [0,1], and as a consequence, 𝑃𝑃𝑓𝑓 can be 
expressed as a convex combination of extreme points only. Let the extreme points of 𝑃𝑃𝑓𝑓 be denoted by 𝑥𝑥𝑓𝑓

𝑗𝑗, where 𝑗𝑗 ∈
𝒥𝒥𝑓𝑓 and 𝒥𝒥𝑓𝑓 is the set of indices iterating over the extreme points.  The monolithic problem shown in Equation (34) is 
rewritten as the so-called master program: 

      

min � � 𝜆𝜆𝑓𝑓
𝑗𝑗𝑐𝑐𝑓𝑓⊤𝑥𝑥𝑓𝑓

𝑗𝑗

𝑗𝑗∈𝒥𝒥𝑓𝑓𝑓𝑓∈ℱ

  

� � 𝜆𝜆𝑓𝑓
𝑗𝑗𝐷𝐷𝑓𝑓𝑥𝑥𝑓𝑓

𝑗𝑗

𝑗𝑗∈𝒥𝒥𝑓𝑓𝑓𝑓∈ℱ

= 𝑏𝑏𝐷𝐷 

� 𝜆𝜆𝑓𝑓
𝑗𝑗

𝑗𝑗∈𝒥𝒥𝑓𝑓

= 1, ∀𝑓𝑓 ∈ ℱ 

𝜆𝜆𝑓𝑓
𝑗𝑗 ≥ 0, ∀𝑗𝑗 ∈ 𝒥𝒥,𝑓𝑓 ∈ ℱ 

(35) 

where  𝜆𝜆𝑓𝑓
𝑗𝑗  are decision variables. 

Let the number of rows in the master problem blocks 𝐷𝐷1,…𝑛𝑛 be denoted by 𝑚𝑚0 and the number of rows in each 
sub-problem block be denoted by 𝑚𝑚1,…,𝑛𝑛. Then, the number of constraints in the monolithic form of the problem 
shown in Eq. (34) is equal to 𝑚𝑚0 + ∑ 𝑚𝑚𝑓𝑓𝑓𝑓∈ℱ , whereas the master program shown in Eq. (35) consists of 𝑚𝑚0 + 𝑛𝑛 
constraints. The BLO formulation constraints are such that 𝑚𝑚0 is significantly smaller than the number of 
monolithic constraints; however this is achieved by using an exponentially larger number of variables which 
correspond to the extreme points of all the sub-problems. 

The advantage of the DW decomposition is that in spite of a large number of variables, at any given simplex 
iteration of the master program, a vast majority of the variables 𝜆𝜆𝑓𝑓

𝑗𝑗  are zero and their corresponding columns in the 
master program simplex tableau are not used. By utilizing a process called delayed column generation, only 
potentially useful columns are added to the master program iteration. Details of the algorithm can be found in Refs. 
[9] and [10] and are summarized here. 

Dual variables are associated with the master problem constraints, of which 𝑚𝑚0 dual variables, denoted by 𝜎𝜎, 
correspond to the capacity constraints, and 𝑛𝑛 dual variables, denoted by 𝜋𝜋1,…,𝑛𝑛, correspond to the convexity 
constraints for the 𝑛𝑛 sub-problems. In the revised simplex tableau, the dual variables are obtained directly from the 
row of reduced costs. The 𝑓𝑓th sub-problem consists of the LP min  �𝑐𝑐𝑓𝑓⊤ − 𝜎𝜎⊤𝐷𝐷𝑓𝑓�𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑓𝑓 ∈ 𝑃𝑃𝑓𝑓. If the optimal cost to 

this problem is less than 𝜋𝜋𝑓𝑓, then the optimal solution is an extreme point, and a column ��𝐷𝐷𝑓𝑓𝑥𝑥𝑓𝑓
𝑗𝑗�
⊤

  𝑒𝑒𝑓𝑓⊤ �
⊤

 is 
generated, where 𝑒𝑒𝑓𝑓 is a vector of length 𝑛𝑛 consisting of zeros everywhere except for the 𝑓𝑓th entry, which is equal to 
1. If the optimal cost is no less than 𝜋𝜋𝑓𝑓 , no column is generated. Since the BLO variables are bounded, the optimal 
cost is always finite. The master problem reaches optimality when no columns are generated by any sub-problem. 



 
American Institute of Aeronautics and Astronautics 

 
 

14 

Of importance is the fact that the 𝑓𝑓th sub-problem consists only of constraints given by the matrix 𝐹𝐹𝑓𝑓, and the 
solution to one sub-problem does not depend on the solutions to the other sub-problems. This motivates the use of 
parallel implementations of the DW decomposition.  

B. Application of Dantzig-Wolfe Formulation 
The example problem with capacity constraints can be rewritten as follows10: 

 

 
max 𝑐𝑐1⊤𝑥𝑥1 + 𝑐𝑐2⊤𝑥𝑥2 + 𝑐𝑐3⊤𝑥𝑥3 
𝐷𝐷1𝑥𝑥1 + 𝐷𝐷2𝑥𝑥2 + 𝐷𝐷3𝑥𝑥3 = 𝑏𝑏0 

𝐹𝐹1𝑥𝑥1 = 𝑏𝑏1 
𝐹𝐹2𝑥𝑥2 = 𝑏𝑏2 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
 

(36) 

where, 𝑥𝑥1 = �𝑥𝑥1,𝐴𝐴𝐴𝐴
2 , 𝑥𝑥1,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥1,𝐴𝐴𝐴𝐴
4 , 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5�

⊤
 and 𝑥𝑥2 = �𝑥𝑥2,𝐴𝐴𝐴𝐴

3 , 𝑥𝑥2,𝐴𝐴𝐴𝐴
4 , 𝑥𝑥2,𝐴𝐴𝐴𝐴

5 , 𝑠𝑠6, 𝑠𝑠7, 𝑠𝑠8, 𝑠𝑠9, 𝑠𝑠10�
⊤

 where 𝑠𝑠1, 𝑠𝑠2, 
𝑠𝑠6, and 𝑠𝑠7 are the slack variables for the inequality constraints and 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠8, 𝑠𝑠9, and 𝑠𝑠10 denote the slack 
variables for the linear relaxation. Let 𝑥𝑥3 = {𝑠𝑠11, 𝑠𝑠12, 𝑠𝑠13, 𝑠𝑠14, 𝑠𝑠15, 𝑠𝑠16}⊤ denote the vector of slack/surplus variables 
defined in Section II. The matrices 𝐷𝐷1, 𝐷𝐷2, and 𝐷𝐷3 denote the master problem constraint matrices which couple the 
states 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3, where 𝐷𝐷1 and 𝐷𝐷2 are the contributions from each flight, and, and 𝐷𝐷3 is an auxiliary master 
problem block matrix in order to convert the coupling inequality constraints into equality constraints. The vector 𝑏𝑏0 
denotes the master problem capacities. The matrices are given by the following 

 

 

𝐷𝐷1 = �
1

−1 1
−1 1

� 

𝐷𝐷2 = �
1

1
−1 1

� 

𝐷𝐷3 = �
−1 1

−1 1
−1 1

� 

𝑏𝑏0 = [1 1 1]⊤ 
 

(37) 

 
Cost function components are given by the following: 

 
𝑐𝑐1 = [1 1 98 0 0 0 0 0]⊤ 
𝑐𝑐2 = [1 1 98 0 0 0 0 0]⊤ 

𝑐𝑐3 = [−200 −200 −200 0 0 0]⊤ 
(38) 

Cost function vector 𝑐𝑐3 is used to penalize any violation of the capacity constraint. Note that for coupling constraints 
of the form 𝐷𝐷𝐷𝐷 ≥ 𝑏𝑏 where 𝑏𝑏 > 0, the slack variable should be penalized. 

The sub-problems are defined as the constraints for variables that do not include other variables in the monolithic 
LP. The BLO model lends itself naturally to a decomposition of unique sub-problems, as shown below: 
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𝐹𝐹1 =

⎣
⎢
⎢
⎢
⎡ 1 −1 1

1 −1 1
1 1

1 1
1 1 ⎦

⎥
⎥
⎥
⎤
 

𝐹𝐹2 =

⎣
⎢
⎢
⎢
⎡ 1 −1 1

1 −1 1
1 1

1 1
1 1 ⎦

⎥
⎥
⎥
⎤
 

𝑏𝑏1 = [0 0 1 1 1]⊤ 
𝑏𝑏2 = [0 0 1 1 1]⊤ 

 

(39) 

It should be noted that the auxiliary sub-problem does not consist of any constraints.  

C. Solution using Delayed Column Generation 
Dantzig-Wolfe decomposition is predicated upon the idea that every sub-problem can be reformulated in terms 

of extreme points and extreme rays. Extreme points are vertices of the feasibility region, as shown in Figure 6. 

 
Figure 6. Extreme Points in a Linear Program 

In TFM and consequently in the IADSE examples, the sub-problems are bounded by construction (the linear 
relaxation ensures that every variable is bounded between 0 and 1). Therefore, there are no extreme rays and every 
sub-problem solution can be written as a linear combination of its extreme points. Such a form of the master 
problem and the sub-problems can be derived for the example at hand. This would result in the reduction in the size 
of the master problem. For the example problem, it can be easily seen that the reduced master problem consists of 14 
variables (4 convex multipliers each for 2 sub-problems, and 1 slack and surplus variable for each constraint) and 5 
constraints (3 master problem constraints and 1 convexity constraint each for 2 sub-problems). In comparison, the 
original, monolithic problem consists of 22 variables (8 variables for each sub-problem and 1 slack and surplus 
variable for each coupling constraint) and 11 constraints (5 constraints for each sub-problem and 3 coupling 
constraints). The computational magnitude is approximately the same regardless of whether one attempts to solve 
the monolithic problem or the decomposed problem. In the present example, the extreme points can be identified 
easily, but in realistic cases the extreme points for each sub-problem may be too numerous to list exhaustively. In 
this scenario, the DW decomposition results in a problem with a relatively small number of constraints (sum of the 
number of coupling constraints and one convex constraint for each sub-problem) but a potentially exponential 
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number of variables (one convex multiplier for each extreme point in a sub-problem). The power of DW 
decomposition arises from its use of delayed column generation10 because not all columns in the simplex tableau for 
the reduced master problem are required at any given point; in fact a large number of them can be ignored when the 
corresponding convex multipliers are very small. In other words, knowledge of all the extreme points for a sub-
problem is not usually required and the required extreme points can be generated when necessary, by solving sub-
problems independently (and in parallel) with a modified cost function. It can be shown that the solution obtained 
using primal simplex and delayed column generation are identical5.  

As noted in the preceding paragraph, the power of DW decomposition is predicated on the idea that the number 
of columns in the reduced master problem for realistic cases can be too numerous, and a relatively small number of 
columns are required at any iteration. For the example discussed, the simplex tableau is able to reach optimality 
within 3 iterations, so only 3 columns were required. The use of a limited number of columns motivates the revised 
simplex algorithm with compact basis. The difference between the revised simplex algorithm and ‘regular’ (primal) 
simplex algorithm is that any given iteration, the revised simplex tableau consists only of the inverse of the current 
basis matrix. The same iterations which are used to transform 𝐵𝐵 to 𝐼𝐼 (identity matrix) in the regular simplex method, 
will transform 𝐼𝐼 to 𝐵𝐵−1 in the revised simplex method. For the same LP, revised simplex requires less memory 
because fewer columns are stored. However, the required number of computations increases because candidate 
entering columns must be calculated at each simplex iteration using 𝐵𝐵−1𝑎𝑎𝑗𝑗 where 𝑗𝑗 is a non-basic variable, whereas 
in the regular simplex tableau, these columns are already available in the current simplex tableau. It can be shown 
that, for the current problem the revised simplex method requires 4 iterations to achieve optimality5. However, for 
the sake of brevity wee have omitted it in the current work.  

IV. Parallelization and Performance Tests 
Due to the massive parallelizable opportunity that the current problem poses, when DW decomposition is done, 

it was appropriate that its implementation in multi-core machines be investigated. The current optimization problem 
was hence implemented on Intel® Xeon Phi™ processors11. In this section we benchmark the sub-problem solver 
(bounded simplex solver) on both the host and the coprocessor with various problem sizes and logical cores. A 
comparison of load balancing and task scheduling is also provided.  Table 1 provides the results. 

Table 1. Execution Time vs Number of Logical Cores on Host and Coprocessor for 1000 Flights 

Number 
of logical 
cores 

Execution time on CPU (sec) 
Intel Xeon E5-2620 @ 2.00GHz 

Execution time on Xeon Phi (sec) 
Intel Xeon Phi 7120P @ 1.00GHz 

1 14.3790 139.4403 
16 2.6429 11.7328 
64 N/A 4.5658 
120 N/A 2.7172 
240 N/A 4.8757 

Note that the peak performance is generally reached by reducing a few cores from the maximum number of 
cores. Both the host and the coprocessor needs a few cores to run system application, loading them with task will 
quench performance. Also note that the coprocessor reaches maximum performance at 120 logical core (61 cores – 1 
core for system * 2 way hyper-threading = 120 logical cores). Increasing logical cores—hence increasing 
hyperthreading capacity will also quench performance due to maximum bandwidth limitations. 

In this test, we time the execution time for 50, 100, 1000, and 4000 flights using the best result obtained in Table 
1: 22 logical cores on host and 120 logical cores on the device. Table 2 lists the results.  

Table 2. Problem Size vs Host and Coprocessor Best Execution Time 

Problem Size Execution time on CPU (sec) 
Intel Xeon E5-2620 @ 2.00GHz 

Execution time on Xeon Phi 
(sec) 
Intel Xeon Phi 7120P @ 
1.00GHz 

50 0.2600 0.4997 
100 0.3127 0.7124 
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1000 2.32511 2.7172 
4000 15.6016 14.8421 

 

V. Application of the IADS Solver to New York TRACON 
 
The current algorithm was implemented to schedule flights in the New York N90 TRACON. Only the traffic in 

the terminal area is considered. To standardize the arrival routes, each flight is assumed to follow a certain route. 
The standardized routes are given Standard Terminal Arrival Routes (STARs) and Standard Instrument Departures 
(SIDs) for arrivals and departure respectively.  

For the surface, only arrivals and departures to JFK airport is considered. The surface in JFK is represented as 
runway nodes, taxi nodes, ramp nodes and gate nodes. Typical surface traffic in JFK is seen in Figure 7. 

 
Figure 7. Surface Traffic at JFK 

A. Numerical Results 
It is assumed that the traffic data is streamed to the BLO scheduler. It means that the BLO scheduler was run in 

cycles. Each cycles consisted of a collection of aircraft which is in the terminal area but has not yet reached the gate. 
If an aircraft reaches the gate it is removed from the problem. Furthermore the results of the BLO based optimizer is 
compared with a discrete-event simulation-based  (DES-based) deconflicting algorithm. The discrete event 
simulation algorithm is based on first come first serve basis.  

Two scenarios are constructed; in the first scenario, separation requirement for all flights is 30 seconds at merge 
points, whereas in the second scenario separation requirement is 60 seconds at merge points. These scenarios reflect 
airport operations impacted by arrival capacity, i.e. when operations are limited by factors such as weather, it is 
necessary to increase the spacing between arrival flights. 

In each scenario, schedules are obtained using the DES as well as the optimizer, using streaming data. The first 
‘snapshot’ consists of flights in the system at T=15 minutes, and the second ‘snapshot’ consists of flights in the 
system at T=30 minutes. It is important to note that the streaming data is from historical sources, and the TFM 
directives (delays) obtained by the optimizer or DES are ignored. 
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1.1.1. Separation of 30 Seconds 

 
(a) T=15 Minutes 

 
(b) T=30 minutes 

Figure 8. System Delays Obtained using DES and Optimizer for Separation of 30 Seconds 

Delays obtained for flights in the simulation for a terminal-area separation of 30 seconds is shown in Figure 8(a) 
and (b). The delays obtained from the optimizer are significantly smaller than those obtained from the DES. At a 
given iteration of the streaming data, there are approximately 60 flight operations in the TRACON. The mean of the 
delays is shown by the broken line, however, due to the small number of flights, the standard error associated with 
the mean is significant and the mean itself is not necessarily a good indicator of the performance. However, the x-
axis on both figures show that the maximum delay obtained from the optimizer is 4 minutes, whereas the DES 
shows delays of up to 12 minutes.  Figure 8(a) shows the result of the scheduler when the streaming data is at time 
stamp of 15 minutes, and Figure 8(b) shows the result at time stamp 30 minutes. As time progresses, the increase in 
the mean delay is less than 1 minute in both cases, although the number of flights with larger delays increases 
slightly using both methods. 

1.1.2. Separation of 60 Seconds 

 
(a) T=15 Minutes 

 
(b) T=30 minutes 

Figure 9. System Delays Obtained using DES and Optimizer for Separation of 60 Seconds 

Delay effects are more pronounced when the separation requirement is increased to 60 seconds, as shown in 
Figure 9(a) and Figure 9(b). In comparison with Figure 8, delays obtained DES increase by approximately 2 ×. The 
increase in the delays from the optimizer are modest; although the maximum delay does not increase significantly, 
the proportion of flights which experience larger delays increases. Again, as noted before, the results from two 
different points in time show that the delays increase as time progresses. 
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VI. Conclusion 
The current work implements an integrated arrival departure surface enroute optimization algorithm based on the 

Bertsimas-Lulli Odoni model, for scheduling aircraft. A novel method of converting separation constraints between 
two aircraft into airspace capacity constraints was proposed, such that it was consistent with the BLO formalism. 
The problem was decomposed into a number of sub-problems and a master problem by using Dantzig-Wolfe (DW) 
decomposition and strong LP relaxation. Due to DW decomposition the problem was amenable to be solved using 
parallel machines.  

The parallelized BLO solver was implemented to schedule flights in New York N90 TRACON with the 
TRACON situation being constantly updated using data streams. The method was then compared with baseline first-
come-first-serve methodology, implemented using discrete event simulation. It was found that the BLO based 
optimizer performed better in minimizing delays and thus increasing throughput.  
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