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This paper presents semi-analytical techniques for the study of the cov-

erage by satellites in Earth orbits. In particular, the coverage by a satellite

over a designated area on the Earth’s surface is studied as a function of or-

bital elements. The semi-analytical nature of the methods developed enable

the evaluation of several performance metrics associated with the coverage

problem without the need for numerical integration of the orbit’s param-

eters over the satellite’s lifetime. Results are shown to match very well

with those obtained from numerical simulations on a full-scale model. In

the second part of the paper, analytical formulae for velocity increments

required for orbit maintenance are presented. These formulae are useful

for estimating a fuel budget for a a particular terrestrial coverage mission.
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A Area of spacecraft cross-section, km2

a Semimajor axis, km

CD Coefficient of drag
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e Eccentricity

(E, f, l) (Eccentric, True, Mean) anomaly, rad

(F, θ, λ) (Eccentric, True, Mean) arguments of latitude, rad

g Argument of periapsis, rad

h Right ascension of the ascending node (RAAN), rad

~ Specific angular momentum of the satellite, km2/s

i Inclination, rad

I0...3(x) Modified Bessel functions of order 0 to 3, with argument x

J2 Zonal harmonic coefficient due to Earth oblateness, 1.0826× 10−3

m Mass of spacecraft, kg

n Mean motion of the satellite in its orbit, rad/s

nE Rate of rotation of the Earth about its axis, 7.2921× 10−5rad/s

p Semiparameter, km

(q1, q2) Nonsingular components of the eccentricity vector

r Current radius of the satellite’s orbit, km

R⊕ Radius of the Earth, 6378.1363 km

(ur, uθ, uh) Components of external acceleration satellite in the rotating frame, km/s2

βhalf Earth-centered half angle of a conical center, rad

∆t Elapsed time from epoch, s

(∆Vr,∆Vθ,∆Vh) Velocity impulses in orbit radial, circumferential, and out-of-plane direc-

tions

γhalf Sensor half angle of a conical center, rad

κ Atmospheric scale height, km−1

µ⊕ Gravitational parameter of the Earth, 398600.4415 km3/s2

φ Latitude, rad

ψ Longitude, rad

ρP Atmospheric density at perigee, kg/ km3

˙( )s Secular drift rate of orbital angle, rad/s

I. Introduction

Satellite orbit design for target access, from the point of view of responsive space, is a

key area of present-day research. The particular problem studied in this paper is that of

the design of orbits for satellites, with the imperative of gaining visual or sensing access

to a target on the surface of the Earth. The target could be one location, specified by a

latitude or longitude, or a region of interest on the Earth’s surface. To this end, the design

of the satellite’s orbit must satisfy performance metrics that are specified by the end user,
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for example, the total time of coverage over a region, access to day-time and night-time

coverage, or time required to access a different region, among others. Typically, the design is

carried out through the use of numerical tools that simulate the full-scale space environment

for low-Earth orbiting satellites.

Several works in the literature[1, 2] study the problem of coverage using repeating-

groundtrack or compatible orbits[3], whose orbital period is resonant with the rotation of

the Earth and orbit precession, such that the ground trace of the satellite repeats itself after

an integral number of orbits of the satellite. These orbits are very useful for mapping the

same area multiple times in a given time-frame. However, the use of compatible orbits can

result in orbital eccentricities that are significant. Table 1 shows the values for semimajor

axis and eccentricity, for the compatibility condition presented in [3], for an orbit inclina-

tion of 37◦, and with a perigee altitude fixed at 400 km. The conditions for compatibility

can be expressed as equations in the mean orbital elements and are presented later in the

paper. It can be observed that as the number of repeating groundtracks per day decreases,

the value of eccentricity also increases. Some values of repeating groundtracks per day can

result in infeasible orbits. For example, as shown in Table 1, for the given perigee altitude

and inclination, a requirement of 16 groundtracks per day results in e = −0.033.

Table 1. Semimajor Axis and Eccentricity Values for Compatible Orbits

Days Orbits a ( km) e

1 12 7997.59 0.152

1 13 7573.33 0.105

1 14 7198.75 0.058

1 15 6864.63 0.012

1 16 N/A N/A

2 29 7027.12 0.035

3 44 6971.98 0.029

4 59 6944.79 0.023

The drift in perigee is directly related to the eccentricity of the orbit. If the focus of the

mission is visual access, altitude from the target site is of importance, and corrective measures

have to be taken to maintain perigee. Compatible orbits of lower eccentricity are possible,

but due to the nature of the resonance condition, the number of orbits between repeating-

groundtracks increases several-fold. After a point, the difference between a compatible orbit

with a high order of resonance, and an incompatible orbit, is only one of terminology.

This paper studies the coverage problem using satellites in orbits of low eccentricity.

In particular, results are presented for the problem of calculating the time of passage of
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a satellite over a given target area. The first approach uses a nonlinear model requiring

numerical integration. This provides very accurate results for the time and gain and loss of

access. The second method reduces the problem from one requiring numerical integration

over the entire lifetime of the orbit, to one requiring a gradient-based numerical solution

at the times of gain and loss of access, with the aid of good initial guesses to initiate the

root-solving process.

II. Nonlinear Model

The position of a satellite in its orbit can be obtained by either integrating the equations of

motion in an Earth-centered inertial frame (ECI), or a local-vertical local-horizontal (LVLH)

frame rotating with the satellite. In the first case, the state variables are the inertial position

and inertial velocity. In the second case, the LVLH axes are taken as the satellite’s radial

direction, the orbit normal, and the cross product completes the triad of vectors. The state

variables are the orbital elements, and the equations are given by Gauss’ equations[4]:

da

dt
=

2a2

~

(
e sin f ur +

p

r
uθ

)
(1a)

de

dt
=

1

~
{p sin f ur + [(p+ r) cos f + re] uθ} (1b)

di

dt
=
r cos θ

~
uh (1c)

dh

dt
=
r sin θ

~ sin i
uh (1d)

dg

dt
=

1

~e
[−p cos f ur + (p+ r) sin f uθ]−

r sin θ cos i

~ sin i
uh (1e)

df

dt
=

~
r2

+
1

~e
[p cos f ur − (p+ r) sin f uθ] (1f)

where ~ =
√
µ⊕p, p = a(1− e2), and r = p/(1 + e cos f). The external accelerations include

oblateness and drag effects[5], or, in the case of powered flight, the accelerations due to

thrusters. For example, the accelerations due to oblateness effects are given by[5]:
ur

uθ

uh

 = −3

2

µ⊕J2R
2
⊕

r4


1− 3 sin2 i sin2 θ

2 sin2 i sin θ cos θ

2 sin i cos i sin θ

 (2)

It may be noted that several alternative sets of states can be used to describe satellite motion

in the LVLH frame. The equations corresponding to these sets can be obtained directly from

Gauss’ equations.

A schematic diagram of the satellite in its orbit is shown in Fig. 1. The current latitude
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Figure 1. Satellite in an Earth Orbit

and longitude of the satellite in its orbit, and the angle subtended by the conical sensor at

the Earth’s center, can be obtained by the following equations:

sinφ = sin i sin θ (3a)

ψ = g −GMST− nE ∆t+ arctan(cos i tan θ) (3b)

βhalf = −γhalf + arcsin

(
r

R⊕
sin γhalf

)
(3c)

where GMST is the Greenwich mean sidereal time[3] of epoch. The GMST adjusts the

longitude to account for the Greenwich meridian, and the term nE ∆t accounts for the

rotation of the Earth since epoch. Let the latitude and longitude of the target site be denoted

by the pair (ψ0, φ0). The unit vector in the ECI frame, from the origin at the Earth’s center,

and passing through the target site, is denoted by k0. Similarly, the unit vector from the

origin to the satellite is denoted by k. These vectors are given by the following equations:

k0 = {cosφ0 cosψ0 cosφ0 sinψ0 sinφ0}> (4a)

k = {cosφ cosψ cosφ sinψ sinφ}> (4b)
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Assuming a conical sensor that covers an area that subtends an angle βhalf at the Earth’s

center, the target is considered within access if the angle between the two vectors in Eqs. (4)

is less than βhalf . A conical sensor is assumed to simplify analysis, since any point on the edge

of the conical projection on a sphere subtends equal angles with the center of the projection.

However, the analysis of different conical projection shapes is also possible, by using a conical

sensor whose projection bounds the given projection geometry.

The time at which target access is acquired or lost, can be obtained by checking for the

following condition:

k0 · k = cosφ

⇒ cosφ cosφ0 cos(ψ − ψ0) + sinφ sinφ0 = cos βhalf (5)

If coverage of a target region is desired instead of a target site, then the region can be

approximated by a projected circle on the Earth’s surface, whose center is given by the pair

(φ0, ψ0), and whose boundary subtends an angle β0 at the center of the Earth. In this case,

Eq. (5) can be used if β0 + βhalf is used as the argument of the right-hand side.

The time of gain and loss of access to a target site or region can be calculated to the same

accuracy as that used to numerically integrate the orbit using Eqs. (1), by using Hénon’s

method for Poincaré maps[6]. In this method, a new state S is defined, which represents

Eq. (5):

S = cosφ cosφ0 cos(ψ − ψ0) + sinφ sinφ0 − cos(β0 + βhalf) (6)

The differential equation for the state can be obtained by differentiating Eq. (6) with respect

to time, to obtain:

dS

dt
= − sinφ cosφ0 cos(ψ − ψ0)

dφ

dt
− cosφ cosφ0 sin(ψ − ψ0)

dψ

dt
+ sin(β0 + βhalf)

dβhalf

dt
(7)

where, from Eqs. (1) and Eq. (3),

dφ

dt
=

1

cosφ

(
cos i sin θ

di

dt
+ sin i cos θ

dθ

dt

)
(8a)

dψ

dt
=
dh

dt
− nE +

1

(1 + cos2 i tan θ)

(
sin i tan θ

di

dt
+ cos i sec2 θ

dθ

dt

)
(8b)

dβhalf

dt
=

sin γhalf√
R2
⊕ − r2 sin2 γhalf

dr

dt
(8c)

Gain or loss of access is triggered when S = 0. Equation (6) and Eqs. (1) result in a 7th-

order augmented system of equations, comprising the states {a e i h g f S}>, which are
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integrated until S changes sign, indicating a neighborhood of the time t0 where S = 0. Let

the two instants of time be t− and t+, and without loss of generality, let it be assumed that

S− = S(t−) < 0, and S+ = S(t+) > 0. To find the exact time t0 ∈ (t−, t+) where S = 0, a

new system of equations, with S as the independent variable, is integrated from S = S− to

S = 0, numerically. The new system of equations are obtained by dividing the augmented

system by dS/dt. For example, the differential equation for semimajor axis a with respect

to S can be derived from Eq. (1a) and Eq. (7) to yield da/dS = (da/dt) / (dS/dt). The

7th equation in the augmented system, given by Eq. (7), is replaced by dt/dS = (dS/dt)−1.

Upon integration of this system of equations, t0 can be obtained at S = 0.

III. Model Simplification and Semi-Analytical Approach

The approach in the previous section has two advantages: 1) The accuracy of target

acquisition time is the same as that of the integration scheme, and 2) arbitrary perturbations

can be added to the model, for example, higher-order zonal harmonics, tesseral and sectorial

harmonics, and third-body effects. However, since J2 and drag dominate these effects in low

Earth orbits, considerable simplifications can be introduced in the model, that enable the

use of gradient-based root-solving techniques to solve Eqs. (3) directly for the time of target

acquisition. These algorithms (for example, the fsolve routine of MATLAB R©) perform

most efficiently with the availability of a good initial guess, and an analytical technique to

obtain these guesses, is presented in this section.

A. Oblateness Effects and Mean Elements

Numerical simulations reveal that the most dominant effects on LEO satellites are due to

J2 and drag. If it is assumed that velocity corrections are routinely applied to correct for

drag (discussed later in the paper), then the orbit of the satellite can be described using

‘mean’ elements obtained from Brouwer theory[7]. Using this theory, the mean semimajor

axis, eccentricity and inclination are assumed constant, and the mean RAAN, argument of

perigee and mean anomaly change from their initial values at constant secular rates, that

are given by

ġs = −3

4
J2n

(
R⊕
p

)2

(1− 5 cos2 i) (9a)

ḣs = −3

2
J2n

(
R⊕
p

)2

cos i (9b)

l̇s = n

[
1− 3

4
J2η

(
R⊕
p

)2

(1− 3 cos2 i)

]
(9c)

7 of 29



The current, ‘osculating’ elements are obtained by a symplectic transformation of the mean

elements, by the inclusion of short-periodic and long-periodic variations, of increasing order

in J2. For example, Brouwer[7] and Kozai[8] include terms through O(J2
2 ), whereas [9–12]

develop formulae through O(J3
2 ) and O(J4

2 ). Regardless of the order to which the expansions

are carried out, the orbital elements at a given time can be obtained directly from Eqs. (9),

instead of integrating Eqs. (1) numerically. Depending on the order of desired accuracy,

semi-analytic satellite theory[13] can additionally be used generate variations in the orbital

elements due to perturbations in the central gravity field. However, in this paper only first

order effects due to J2 are considered.

The mean orbital elements can be used to design compatible orbits, as shown in Table 1.

The requirement for resonance between the satellite groundtrack and the Earth’s rotation is

expressed by the following equation[3]:

Ndays

(
l̇s + ġs

)
= Norbits

(
nE − ḣs

)
(10)

where Norbits/Ndays is the desired number of orbits per day. Furthermore, the constraint on

perigee altitude hp results in the following equation:

a(1− e) = R⊕ + hp (11)

For given inclination i, Eq. (10) and Eq. (11), together with Eqs. (9), result in one nonlinear

equation in either e or a.

B. Solving for Time of Target Access

Although the use of mean elements significantly simplifies analysis, Eqs. (3) are nonlinear,

transcendental equations in φ and ψ, and apart from the trivial case of an equatorial and

circular orbit, cannot be solved in closed form, to obtain ∆t, given the target latitude and

longitude pair (φ0, ψ0). Analysis may be simplified if it is assumed that the satellite’s orbit is

near-circular. In this case, the orbital elements e, g, and the anomalies (E, f, l) are replaced

by their nonsingular counterparts q1 = e cos g, q2 = e sin g, and (F, θ, λ) = (E, f, l) + g. The

equivalent of Kepler’s equation for nonsingular elements is given by[14]:

sin θ =
q1q2 cosF + (1 + η − q2

1) sinF − (1 + η)q2
(1 + η)(1− q1 cosF − q2 sinF )

(12a)

cos θ =
q1q2 sinF + (1 + η − q2

1) cosF − (1 + η)q1
(1 + η)(1− q1 cosF − q2 sinF )

(12b)

F − q1 sinF + q2 sinF = λ (12c)
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In terms of mean elements,

λ = (g0 + l0) + (ġs + l̇s) ∆t (13a)

q1 = q10 cos(ġs ∆t)− q20 sin(ġs ∆t) (13b)

q2 = q20 cos(ġs ∆t) + q10 sin(ġs ∆t) (13c)

where the subscript ‘0’ is used to denote the initial value of the orbital element.

If eccentricity is assumed low, then only a solution correct to O(e) may be necessary for

an accurate answer. Consequently, the following expansion of the true argument of latitude

in terms of the mean argument of latitude is useful:

θ ≈ λ+ 2(q1 sinλ− q2 cosλ) (14)

Furthermore, terms of order eJ2 are neglected. It can be seen from Eqs. (13) that q1 and q2

time-varying quantities in the presence of oblateness effects; these are held constant at their

initial values.

To find repeated points in time for target acquisition by the conical sensor, a large number

of initial guesses are required for the inverse solution to Eqs. (3). The solution is obtained

in three steps: 1) inverse solution to the latitude access problem, i.e., the time at which the

satellite is within the desired latitude, 2) inverse solution to the longitude access problem,

i.e., the time at which the satellite is within the desired longitude, and 3) a combination of

the two solutions obtained using interval arithmetic.

C. Latitude Access: Restriction to a Ring

This problem is depicted in Fig. 2, where the orbit of the satellite is shown projected on a

rotating Earth, and the grid indicates the ring of interest. The maximum Earth-centered

half-angle, denoted by βmax and maximum swath width of the satellite sensor occur when

the satellite is at apogee, r = a(1 + e). From Eq. (3c),

βmax = −γhalf + arcsin

(
a(1 + e)

R⊕
sin γhalf

)
(15)

The inverse of Eq. (3a) is easily obtained, using the target latitude and longitude pair

(φ0, ψ0), and the maximum half-angle βmax:

θlim1,2 = arcsin

[
sin(φ0 ∓ βmax)

sin i

]
(16)

Therefore, access to the target region is limited to time segments of the satellite orbit, where
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Figure 2. Restriction to a Ring

θlim1 ≤ θ ≤ θlim2 . The points in time corresponding to these values of true argument of

latitude can easily be obtained from the inverse solution to Kepler’s equation in nonsingular

variables. Future intersections with the target region can be calculated using the satellite

orbital period, λ̇s.

D. Longitude Access: Restriction to a Sector

The problem of finding the instants of time for access to areas of the same longitude as

the target region, is depicted in Fig. 3. As noted earlier, the inverse solution to Eq. (3b) is

trivial only for an equatorial, circular orbit. For small values of eccentricity and inclination,

a solution can be obtained by a two-step perturbation technique. To simplify analysis, it is

assumed that the initial mean argument of latitude, λ0, is equal to zero at epoch. Analysis

on different values of λ0 can be performed by choosing a different value of the GMST. In

general, for long-term orbit analysis, for example, a month or more, the effect of changing

λ0 is large.

The solution to the longitude access problem is divided into two parts. The first part

finds an approximate solution for the time (or equivalently, mean argument of latitude) at
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Figure 3. Restriction to a Sector

which the satellite enters (leaves) the sector marked by the minimum (maximum) longitude.

It is worth noting that the convention of a satellite entering and leaving a sector at minimum

and maximum longitude is valid for prograde orbits only. Analysis in this paper does not

change with retrograde orbits.The second part of the method finds time instants of future

crossings, once the time of first crossing is known.

If it is first assumed that the orbit is circular, the longitude equation reduces to

GMST + h0 − ψ0 + βmax +
(ḣs − nE)

λ̇s
λ+ arctan(cos i tanλ) = 0 (17)

Let the variables s1, s2, and s3 be defined as follows:

s0 = GMST + h0 − ψ0 + βmax (18a)

s1 =
(ḣs − nE)

λ̇s
(18b)

s2 = sin i (18c)
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Substituting Eqs. (18) in Eq. (17),

s0 + s1λ+ arctan

(√
1− s2

2 tanλ

)
= 0 (19)

When i = 0, s2 = 0, and this equation has a straightforward solution, and s2 ≤ 1. Let λ =

λ(0)+s2λ
(0)+s2

2λ
(2)+· · · , and χ(s2) = arctan(

√
1− s2

2 tanλ). Upon taking a straightforward

expansion[15] in terms of the small parameter s2, the following equation is obtained:

s0 + s1

(
λ(0) + s2λ

(1) + s2
2λ

(2) + · · ·
)

+

(
χ(0) + s2

dχ

ds2

∣∣∣∣
s2=0

+
s2
2

2!

d2χ

ds2
2

∣∣∣∣
s2=0

+ · · ·

)
= 0 (20)

Forming equations from the coefficients of s2 in Eq. (20), the following are obtained:

λ(1) = λ(3) = λ(5) = . . . = 0

λ(0) =
−s0

s1 + 1

λ(2) =
sin 2λ(0)

1! 22 (s1 + 1)

λ(4) =
sin 2λ(0)

2! 23 (s1 + 1)2

[
(3s1 + 1) sin2 λ(0) + (s1 + 3) cos2 λ(0)

]
(21)

λ(6) =
sin 2λ(0)

3! 24 (s1 + 1)3

[
3(5s2

1 + 4s1 + 1) sin4 λ(0) + 3(s2
1 + 4s1 + 5) cos4 λ(0)

+2(5s2
1 + 22s1 + 5) sin2 λ(0) cos2 λ(0)

]
λ(8) =

sin 2λ(0)

4! 25 (s1 + 1)4

[
3(35s3

1 + 47s2
1 + 25s1 + 5) sin6 λ(0)

+(105s3
1 + 605s2

1 + 331s1 + 63) sin4 λ(0) cos2 λ(0)

+(63s3
1 + 331s2

1 + 605s1 + 105) sin2 λ(0) cos4 λ(0)

+3(5s3
1 + 25s2

1 + 47s1 + 35) cos6 λ(0)
]

...

Typically, an expansion to the eighth order in s2 is sufficient to obtain an accuracy of 1◦ or

better, for inclinations up to 60◦. In fact, if i ≥ 45◦, then the following equation may be

used:

s0 + s1λ+ arctan (s3 tanλ) = 0 (22)

where s3 = cos i. For polar orbits, s3 = 0, and λ = −s0/s1. For all other cases, an expansion

using s3 as a small parameter may be employed, such that λ = λ(0) + s3λ
(0) + s2

3λ
(2) + · · · .
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It can then be shown that:

λ(0) = −s0

s1

λ(1) = − 1

s1

tanλ0

λ(2) =
1

s2
1

sinλ0

cos3 λ0

(23)

λ(3) =
1

3s1

tan3 λ0 −
1

s3
1

sinλ0(2− cos2 λ0)

cos5 λ0

...

The same approach is used to solve for the time of first exit of the sector, using s0 =

GMST = h0 − ψ0 − βmax.

A similar perturbation approach can be used to obtain the correction δλ, to λ through

the first order in eccentricity. It can be shown that

δλ =
−2 cos i sec2 λ(q10 sinλ− q20 cosλ)

s1(1 + cos2 i tan2 λ) + cos i sec2 λ
(24)

The above formulae result in the calculation of times of first entry and exit into the sector

to an accuracy of a few seconds.

The calculation of future crossings into and out of the sector is complicated by the fact

that Eq. (3b) has multiple solutions, and the rotation of the Earth must be accounted for.

The circular case is considered, and it is assumed that the time of first entry or exit satisfies

Eq. (19), with the appropriate value of s for entry or exit. If the next crossing occurs at

λ+ L , then this value must also satisfy Eq. (19):

s0 + s1(λ+ L) + arctan

[√
1− s2

2 tan(λ+ L)

]
= 0 (25)

Subtracting Eq. (19) from Eq. (25), the following equation is obtained:

tanL

1− s2
2 (sinλ+ cosλ tanL) sinλ

=
− tan s1L√

1− s2
2

(26)

When s2 = 0, L = L(0) = 2π/(1 + s1). A complicated solution using perturbation techniques

using s2 as a small parameter may be employed, but this results in solutions that are not

only dependent on the inclination, but also on the mean latitude λ. Consequently, an error in

calculating the kth crossing compounds the error in calculating λ at the (k + 1)th crossing.

The necessity for a perturbation solution is avoided, if an accurate solution to the prior
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crossing is obtained, using numerical optimization. In other words, if λapprox obtained from

Eq. (21) and Eq. (24) is used to solve Eq. (19) using gradient techniques, then the accurate

value λ thus obtained is used in Eq. (26). Through O(s2
2), the following is obtained:

L = L(0) − s2
2

2

sin 2λ tan2 L(0) + 2s2
1 tanL(0) + tan s1L

(0)

sec2 L(0) + s1 sec2 s1L(0)
(27)

A second order solution is found sufficient, since L ≤ 2π. Since the error contributed by

neglecting higher-order inclination terms is high, an eccentricity correction will not improve

upon an analytically obtained solution.

E. Latitude and Longitude Access: Restriction to a Patch

Figure 4. Restriction to a Patch

Although the restriction to the ring latitudes and sector longitudes can be be found inde-

pendently, resulting in two independent series of time intervals, of interest is the intersection

of these two sets. This problem is depicted in Fig. 4.
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Let the two sets of time series be denoted by Tlat and Tlon, such that:

Tlat =
m⋃
j=1

[
αlowj

, αupj

]
(28a)

Tlon =
n⋃
k=1

[
βlowj

, βupj

]
(28b)

where [αlowj
, αupj

] is the jth interval of latitude (ring) access, and [βlowj
, βupj

] is the kth

interval of longitude (sector) access. The intervals of latitude access are mutually disjoint,

as are those of longitude access, and are arranged in increasing order, i.e., αlowj+1
> αupj

∀j,
and βlowk+1

> βupk
∀k. The series of intervals can be rewritten in center-radius form,

Tlat =
m⋃
j=1

〈
αcj , αrj

〉
(29a)

Tlon =
n⋃
k=1

〈
βcj , βrj

〉
(29b)

where,

αcj = (αlowj
+ αupj

)/2, αrj = (αupj
− αlowj

)/2 (30a)

βcj = (βlowj
+ βupj

)/2, βrj = (βupj
− βlowj

)/2 (30b)

Let T = Tlat ∪ Tlon be the series of (m + n) intervals, whose kth interval is denoted by

< δck , δrk >, arranged in increasing order of center value, such that δck+1
≥ δck . The kth and

(k+ 1)th interval intersect if the distance between their centers is less than the sum of their

radii, i.e., if δck+1
− δck ≤ δrk+1

+ δrk . If the condition of intersection is satisfied, the interval

of this intersection is given by

[
max(δlowk

, δlowk+1
),min(δupk

, δupk+1
)
]

(31)

IV. Orbit Maintenance in the Presence of Drag and Oblateness

In the previous section, formulae for analyzing orbital coverage have been presented.

The focus of this section is on analytical formulations for the calculation of velocity impulses

required for orbit maintenance. Unlike the preceding sections, analysis is not limited to

low eccentricity orbits and the results are therefore valid for a larger class of orbits. Situa-

tions where orbits may be of moderate eccentricity may be encountered, for example, when

compatible orbits are used for coverage, as shown in Table 1.
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The major effect of the J2 perturbation is orbit precession, due to the secular change

in the argument of perigee. If the orbit eccentricity is low, this does not pose a significant

challenge to orbit design, since the perigee is poorly defined. However, if the orbit eccentricity

is moderate, then the observation capabilities of the satellite may suffer, since the perigee

is required to stay over a particular region. Atmospheric drag causes a slow decay in the

orbit, reducing eccentricity as well as altitude. Hence, periodic re-boosts are necessary for

the proper operation of satellites.

In this section, it is assumed that velocity impulses are used to change the orbit param-

eters. Furthermore, in cases where multiple impulses are required, it is assumed that the

intermediate impulses are small and do not change the orbital elements to a large extent,

and as a consequence, the initial orbital elements are used in all calculations.

A. Perigee Maintenance

The change in orbital elements due to velocity impulses can be obtained from Eqs. (1), under

the assumption that ∆œ ≈ œ̇ ∆t and Vi ≈ ui ∆t, where œ is an orbital element, ∆t is the

duration of the velocity impulse, and i denotes a direction of the LVLH frame. A change in

perigee due to a radial and circumferential velocity impulse, is thus given by

∆g = −cos f

e
∆vr +

sin f (2 + e cos f)

e(1 + e cos f)
∆vθ (32)

where ∆vr = ∆Vr/
√
µ⊕/p and ∆vθ = ∆Vθ/

√
µ⊕/p are nondimensional quantities. Let the

coefficients of ∆vr and ∆vθ be denoted by the components of a vector b ∈ R2×1, and let

∆vr and ∆vθ be the components of a vector ∆v ∈ R2×1. Consequently, Eq. (32) may be

rewritten as follows:

∆g = b ·∆v (33)

For a given ∆g, Eq. (33) results in an infinite number of possible solutions for ∆v. The

solution space can be constrained by seeking a minimum on the magnitude of the velocity

impulse. For a straightforward analytical result, the square of the two-norm of the impulse

is minimized; this assumes that one omni-directional in-plane thruster is used. The problem

is thus posed as the following:

min J =
1

2
||∆v||22 (34a)

subject to ∆g = b ·∆v (34b)
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It can be shown that the resulting minimum-norm solution is given by:

∆vmin−norm =
∆g

||b||22
b (35)

The corresponding cost, denoted by Jmin−norm, is then as follows:

Jmin−norm(f) =
1

2
||∆vmin−norm||22

=
1

2
(∆g)2 e2(1 + e cos f)2

2e cos3 f + (3− e2) cos2 f − 4e cos f − 4
(36)

The position where the cost is minimum for a given eccentricity, is symmetric about the

apogee and perigee, since Jmin−norm(f) = Jmin−norm(π + f), 0 ≤ f < 2π. The appropriate

location for applying the impulse can be obtained by minimizing Eq. (36) with respect to f .

It can be shown that this requirement results in the solution to the following equation:

− e2 sin f
[
e3 cos4 f + 4e2 cos3 f + e(6 + e2) cos2 f + 3(1 + e2) cos f + 2e

]
= 0 (37)

From a second derivative check of Eq. (36), f = 0, π result in maximum cost. Therefore, the

minimum cost is obtained from the solution to the following quartic polynomial:

P (x) = e3x4 + 4e2x3 + e(6 + e2)x2 + 3(1 + e2)x+ 2e = 0 (38)

where x = cos f . Only solutions to P (x) such that x ∈ R, and |x| ≤ 1, are of interest. Since

Eq. (38) is a quartic equation, a formula for the solution of interest, given by f ∗ can be

found:

cos f ∗ = −1

e
+

1

e

(√
4e6 + 27e4 − 54e2 + 27

6
√

3
+

1− e2

2

)1/3

−e
3

(√
4e6 + 27e4 − 54e2 + 27

6
√

3
+

1− e2

2

)−1/3

(39)

Equation (39) results in two positions where the velocity impulse is optimal, f ∗ and π + f ∗.

When e is small,

f ∗ =
π

2
+

2

3
e+

22

81
e3 +

74

405
e5 +O(e7) (40)

and that the corresponding minimum cost is given by:

J ∗min−norm ≈
e

12
(6− e2)

√
µ⊕
p

∆g (41)
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One problem associated with the use of radial and circumferential velocity increments for

perigee correction, is the resultant change in semimajor axis and eccentricity. This change

can also be obtained from Eqs. (1), and is given by:

∆a

p
=

2e sin f

(1− e2)2
∆vr +

2(1 + e cos f)

(1− e2)2
∆vθ (42a)

∆e = sin f ∆vr +
(2 cos f + e cos2 f + e)

(1 + e cos f)
∆vθ (42b)

If it is assumed that the change in orbital elements after one impulse is negligible, the

optimal impulse for perigee correction can be split into two impulses, one applied at f ∗, and

the other applied at π+f ∗, each causing a change of ∆g/2 . Let the two impulses be denoted

by (∆vr1 ,∆vθ1) and (∆vr2 ,∆vθ2), and the two corresponding sets of orbital element changes

be (∆a1,∆e1,∆g1) and (∆a2,∆e2,∆g2). From Eq. (35), let the two velocity impulses be

selected such that

∆vr1 = ∆vr2 =
e cos f ∗(1 + e cos f ∗)2

2e cos3 f ∗ + (3− e2) cos2 f ∗ − 4e cos f ∗ − 4

(
∆g

2

)
(43a)

∆vθ1 = −∆vθ2 =
−e sin f ∗(1 + e cos f ∗)(2 + e cos f ∗)

2e cos3 f ∗ + (3− e2) cos2 f ∗ − 4e cos f ∗ − 4

(
∆g

2

)
(43b)

The two impulses are applied at f ∗ and π + f ∗, respectively. Since cos f ∗ = cos(π + f ∗) and

sin f ∗ = − sin(π + f ∗), Eq. (32) and Eqs. (42) can be used to show that:

∆g1 + ∆g2 = ∆g (44a)

∆a1 + ∆a2 = 0 (44b)

∆e1 + ∆e2 = 0 (44c)

A change in perigee can also be caused by an out-of-plane impulse, ∆Vh, as can be seen

from Eqs. (1). An out-of-plane impulse may be required to correct for drift in RAAN, given

by the following equation:

∆h =
sin θ

sin i (1 + e cos f)
∆vh (45)

where ∆vh = ∆Vh/
√
µ⊕/p. An out-of-plane impulse also causes a change in orbit inclination,

given by:

∆i =
cos θ

(1 + e cos f)
∆vh (46)

Therefore, the out-of-plane impulse should be applied at θ = π/2 to avoid inclination change.
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This causes a change ∆g = − sin θ cot i/(1+e cos f)∆vh, that can be corrected using in-plane

impulses.

B. Orbit Maintenance in the Presence of Drag

In this section, the effects of drag are studied on the satellite orbit. A simplified analysis is

performed to get approximate values for the amount of fuel (velocity impulse) required to

correct for drag, by the use of analytical formulae. The assumptions are as follows:

1. No oblateness effects: Since oblateness effects have been accounted for in the orbit

design procedure, no fuel is necessary to correct for drift arising due to J2. Furthermore,

it is also assumed that the effect of drag is corrected for, periodically; therefore the

change in orbital elements due to drag are assumed not to change the secular drift

rates due to J2.

2. A non-rotating atmosphere with an exponential pressure equation is assumed. In this

case, the only changes are in the semimajor axis, eccentricity, and argument of peri-

apsis. Furthermore, only the semimajor axis and eccentricity exhibit secular growth.

3. A spherical satellite is assumed, to simplify drag formulation.

This section draws on previous works by Jacchia[16], King-Hele[17], and Mishne[18].

Reference [18] shows that the change in the semimajor axis and eccentricity per orbit, due

to drag effects, are given by

∆a = −2ρPa
2(2π)Kd [I0(κae) + 2eI1(κae)

+(3e2/4) {I0(κae) + I2(κae)}
]

exp(−κae) (47a)

∆e = ρPa(2π)Kd [2I1(κae) + e {I0(κae) + I2(κae)}

−(e2/4) {5I1(κae) + I3(κae)}
]

exp(−κae) (47b)

where

Kd =
ACD
2m

(48)

As noted in [18], the average change in g due to atmospheric drag is zero. Equations (47) are

correct through O(e2). From Eqs. (42), the velocity increments required for given changes

in semimajor axis and eccentricity ∆a and ∆e are given as follows:

∆vr = −η
2

2

(e+ 2 cos f + e cos2 f)

sin f

∆a

p
+

(1 + e cos f)2

η2 sin f
∆e (49a)
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∆vθ =
η2

2
(1 + e cos f)

∆a

p
− e

η2
(1 + e cos f) ∆e (49b)

However, depending upon the location of the impulse, i.e., depending on the value of true

anomaly where the impulse is applied, the magnitude can vary significantly. For example, it

is immediately apparent that applying the impulse near apogee or perigee will lead to very

high values for the radial velocity impulse ∆vr. Furthermore, the use of one impulse may not

be efficient, since the semimajor axis and eccentricity are optimally corrected at individually

different locations in the orbit. Therefore, it may be more beneficial to use two or more

impulses, and avoid the use of radial impulses. Assuming two circumferential impulses are

used, Eq. (42) are modified as follows:

∆a

p
=

2(1 + e cos f1)

(1− e2)2
∆vθ1 +

2(1 + e cos f2)

(1− e2)2
∆vθ2 (50a)

∆e =
(2 cos f1 + e cos2 f1 + e)

(1 + e cos f1)
∆vθ1 +

(2 cos f2 + e cos2 f2 + e)

(1 + e cos f2)
∆vθ2 (50b)

The desired impulses can be found from the inverse solution to Eqs. (50). Since Eqs. (47)

are correct through O(e2), the values of the impulses are expanded through O(e2), to yield

the following expressions:

∆vθ1 =
1

8(cos f2 − cos f1)

[
− (e2 cos2 f1 cos f2 − 2e cos f1 cos f2 + 6e2 cos f2

−4 cos f2 − e2 cos f1 − 2e)
∆a

p
− (2e2 cos f1 cos f2 + 4e cos f2 − e2 cos2 f1

+2e cos f1 + 3e2 + 4) ∆e

]
(51a)

∆vθ2 =
1

8(cos f2 − cos f1)

[
(e2 cos f1 cos2 f2 − 2e cos f1 cos f2 + 6e2 cos f1

−4 cos f1 − e2 cos f2 − 2e)
∆a

p
+ (2e2 cos f1 cos f2 + 4e cos f1 − e2 cos2 f2

+2e cos f2 + 3e2 + 4) ∆e

]
(51b)

The cost associated with the impulses given by Eqs. (51) is dependent on the choice of f1

and f2. The behavior of cost with respect to the choice of f1 and f2 is difficult to analyze,

although it may be studied numerically. It may be observed, however, that if f1 is known,

then a cost function Jdrag = (∆v2
θ1

+∆v2
θ2

)/2 can be formed, such that dJdrag/df2 = 0 results

in a quartic equation in cos f2 that can be solved. Similarly, if f2 is known, dJdrag/df1 = 0
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results in a quartic equation cos f1. By selecting roots of the quartic polynomials such that

additional constraints 0 ≤ f1 ≤ π and π ≤ f2 ≤ 2π are satisfied, the equations can be solved

by iteration until convergence to optimal locations f ∗1 and f ∗2 . The quartic polynomials are

presented as an appendix.

V. Numerical Results

A. Comparison of Numerical and Semi-analytical Results

The basic design criteria for the results are as follows. A target site in the Mediterranean

Sea is located, with a latitude of 37◦N, and longitude of 14◦E (this corresponds roughly to

the location of the island of Sicily). A satellite is placed into a near-circular orbit at epoch

date November 1, 2006, with initial mean elements a = 6812.2 km, e = 0.005, i = 37◦, and

h0 = 30◦. Up to three months of the satellite’s lifetime is studied; since the number of times

the satellite orbits around the planet is large, the initial value of the argument of periapsis

and mean anomaly make insignificant contribution to the results, and are assumed zero.

Table 2. Coverage Time

Days Total Access, Total Access, Daytime Access, Daytime Access,

Analytical (min.) Numerical (min.) Analytical (min.) Numerical (min.)

29 460.6 461.6 174.8 174.5

58 940.7 943.1 367.3 367.0

91 1477.4 1483.1 608.9 611.1

The satellite sensor is assumed to be conical with a sensor half-angle of 40◦. Table 2

presents comparisons between the results from numerical integration, assuming a model with

the J2 perturbation included, and the results from the semianalytical technique presented

in this paper. The orbit of the satellite is integrated over varying lengths of time, as shown

in the first column using a 7th-order Runge-Kutta-Fehlberg integration formula[20] with an

8th-order correction. Consequently, the time of access is calculated with the same accuracy

as the integration tolerance. Although numerical integration schemes for the specific purpose

of orbit propagation are well-represented in the literature[21], this paper does not explore

their use since the methods developed can be suitably adapted to any scheme with ease.

The results from numerical integration and semianalytical root-solving are presented in

the second and third columns, and it is shown that the results match within an error of six

minutes over a three month period. The deviation between the two results is due to the fact

that the seminanalytical technique chosen is correct to the first order in only. However, the
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calculation of time of access based on the semianalytical technique results in a saving of over

70% in computation time.

If a measure of daylight coverage is also desired, then it is easy to select those time

intervals of coverage that occur in local daylight time. In this case, daylight is assumed to

occur between 0700hrs and 1700hrs. These results are useful in the case of multiple sensors

for different wavelengths.

B. Coverage Variation with Launch Parameters

Among the orbital elements, a low value of eccentricity is desired, and the semimajor axis is

fixed if a constraint on perigee altitude is present. The initial values of argument of perigee

and mean anomaly are not important; as a result, the inclination and RAAN offer some

freedom of choice for orbit design.

Figures 5(a) and 5(b) show the time of coverage for different values of initial RAAN,

adjusted for the GMST, and for inclinations varying from 35◦ to 39◦. For different epoch

time, the graph will either shift leftwards or rightwards, due to a change of GMST. The mean

semimajor axis and eccentricity are 6812 km and 0.005, respectively, which is the same as

the previous example. It is observed that the total time of coverage is not very sensitive to

initial RAAN; resulting in a difference of 0.5 minute extra coverage time per day, depending

on initial RAAN. However, maximum coverage is obtained for an inclination of 38◦, as

shown by the dotted line. Approximately 17 minutes of coverage per day, is obtained at this

eccentricity. This value of inclination confirms results presented in [19], where it is suggested

that the inclination of a satellite observing a region be selected within 1◦ of the maximum

latitude of observation. Figure 5(b) shows that if the initial RAAN adjusted for GMST is in

the range −30◦ ≤ h0 ≤ 60, then daylight coverage is minimum, at less than 2 minutes per

day. However, as the total time of the mission increases, the sensitivity of daylight coverage

to RAAN diminishes. The variation of daytime coverage with mission length is shown in

Fig. 6.

It is observed from Fig. 6 that the for the first and third month of the orbit’s lifetime,

daytime coverage shows variation with launch RAAN adjusted for GMST. For the second

month, there is almost no variation. Simulations also show that daytime coverage shows

variation in every odd month, and the variation decreases as time elapses. This is due to the

precessing nature of the orbit in the Earth’s rotating frame; the satellite tends to equalize

night-time coverage and day-time coverage over sufficiently long periods of time. Therefore,

depending on the type and length of mission, Fig. 6 is a good indicator for the initial launch

conditions suitable for the maximization of daytime coverage.
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(a) All Day

(b) Daytime

Figure 5. Coverage Statistics Over a 29 Day Period
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Figure 6. Variation of Daytime Coverage with Elapsed Time

C. Orbit Maintenance in the Presence of Drag

To analyze the effects of drag, it is first necessary to define the physical parameters of the

satellite. It is assumed that the satellite has mass m = 100 kg, cross-section area A =

1 × 10−6 km2, and coefficient of drag CD = 2.2. The atmospheric values are presented in

[17], and are selected as ρP = 7× 10−3 kg/ km3, H = 40 km, and κ = 1/H.

Consider an orbit with an inclination i = 38◦, and h0 = g0 = l0 = 0◦. Perturbation

effects are not considered, since inclusion of these effects only results in periodic variations

in semimajor axis and eccentricity, and drag causes secular drift. Figures 7 show the effects

of drag on semimajor axis, eccentricity, and velocity increment required to reboost the orbit

to its original elements, after a month (28 days), respectively. The figures show results

for two values of perigee altitude, 400 km and 450 km, depicted by the solid and broken

lines, respectively, and for apogee altitude varying from 450 km to 600 km, respectively. The

case where perigee altitude is 400 km and apogee altitude is 450 km is representative of the

examples in the previous sections. Figure 7(a) shows that for circular orbits, drag effects

result in the maximum decrease of semimajor axis (approximately 20 km) over a month. As
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(a) Change in Semimajor Axis

(b) Change in Eccentricity

(c) Velocity Increments for Drag Correction

Figure 7. Drag Effects on Semimajor Axis, Eccentricity, and Velocity Increments
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eccentricity increases, the satellite spends a larger proportion of time in regions further from

the Earths surface, and is less prone to drag effects. While drag effects on semimajor axis

are shown to be monotonic, this is no longer the case with the eccentricity of the orbit,

as shown in Figure 7(b). It should be noted that the maximum eccentricity considered in

these figures is approximately 0.015, which is well within the ambit of the theory used for

drag studies. The values agree closely with those obtained from simulation software such as

SOAP R©under similar conditions.

Figure 7(c) shows the velocity increment required for orbit reboost due to drag effects.

Use of Eqs. (49) is made here, to calculate the magnitude of the velocity impulse required.

For the nominal example, the velocity increment required to account for drag effects is

approximately 6.5 m/s/month. For other cases, as shown in Fig. 7(c), this can be as high

as 11 m/s/month, or as low as 2.5 m/s/month. If two impulses are used, then Eqs. (52) can

be used to find the magnitude of velocity impulse required. The use of two impulses, under

the assumption that radial impulses are not used, and the orbit is nearly circular, results in

a fuel cost approximately half of what is shown in Fig. 7(c). This analysis is therefore very

useful for the study of fuel budgets for missions of this class.

VI. Conclusions

In this paper, the problem of time for target access has been analyzed. Two methods have

been presented to calculate the start of end time of target access by a satellite with a conical

sensor. The first method requires numerical integration and provides accurate results, and

can include arbitrary perturbation effects. The second method simplifies the approach and

reduces the problem to the inverse solution to transcendental equations. Analytical tech-

niques are employed to obtain initial guesses, that can solve these equations. Comparisons

with numerical integration show very accurate results. Furthermore, analytical formulae for

orbit maintenance in the presence of drag and oblateness are presented that are useful for

estimating fuel budgets.

Appendix: Development of Auxiliary Equations for Drag

Correction Using Velocity Impulses

Let Jdrag = (∆v2
θ1

+∆v2
θ2

)/2 where ∆vθ1 ≡ ∆vθ1(f1, f2) and ∆vθ2 ≡ ∆vθ2(f1, f2) are given

by Eqs. (51). Let x = cos f1 and y = cos f2, and let l1 = ∆a/p and l2 = ∆e. Equations (51)

can be rewritten as follows:

∆vθ1 =
1

8(x− y)

{[
e2
(
x2y + 6y − x

)
− 2e (xy + 1)− 4y

]
l1
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+
[
e2
(
2xy − x2 + 3

)
+ 3e (2y + x) + 4

]
l2
}

(52a)

∆vθ2 =
1

8(y − x)

{[
e2
(
xy2 + 6x− y

)
− 2e (xy + 1)− 4x

]
l1

+
[
e2
(
2xy − y2 + 3

)
+ 2e (2x+ y) + 4

]
l2
}

(52b)

Let c0...4(z) be defined as follows:

c4(z) = e4(l1z − l2)2 (53a)

c3(z) = −e2(l1z − l2)(3e2l1z2 + 3e2l1 − 2l1 − 2e2l2z + 2el2) (53b)

c2(z) = 3e2z(l1z − l2)(e2l1z2 + 3e2l1 − 2l1 + 2el2) (53c)

c1(z) = −
(
e4l21z

5 + 9e4l21z
3 − 2e2l21z

3

−12e3l21z
2 + 12el21z

2 + 8e4l21z − 12e2l21z + 8l21z − 4e3l21 + 4el21 + l2e
4l1z

4

−10e3l1l2z
3 + 15e4l1l2z

2 − 42e2l1l2z
2 + 16e3l1l2z − 40el1l2z + 8e4l1l2

−8e2l1l2 − 8l1l2 + 14e4l22z
3 + 42e3l22z

2 + 16e4l22z + 48e2l22z

+16e3l22 + 16el22
)

(53d)

c0(z) = 3e4l21z
4 − 2e2l21z

4 + 4e3l21z
3 − 4el21z

3 − 8e4l21z
2

+12e2l21z
2 − 8l21z

2 + 12e3l21z − 12el21z − 4e2l21 + e4l1l2z
5 + 2e3l1l2z

4

−11e4l1l2z
3 + 18e2l1l2z

3 − 16e3l1l2z
2 + 40el1l2z

2 − 24e4l1l2z + 24e2l1l2z

+24l1l2z + 16e3l1l2 + 16el1l2 − e4l22z4 − 18e3l22z
3 − 16e4l22z

2

−48e2l22z
2 − 48e3l22z − 48el22z − 16e4l22 − 32e2l22 − 16l22 (53e)

If x is assumed known, then dJdrag/dy = 0 results in the following equation:

ϕ1(y) = c4(z) y4 + c3(z) y3 + c2(z) y2 + c1(z) y + c0(z) = 0 (54)

Similarly, if y is assumed known, dJdrag/dx = 0 results in another quartic equation ϕ2(x),

given by:

ϕ2(x) = c4(y)x4 + c3(y)x3 + c2(y)x2 + c1(y)x+ c0(y) = 0 (55)

Since ϕ1(y) and ϕ2(x) are quartic equations, their roots can be found through analytical

formulae. Only roots that satisfy the conditions x, y ∈ R, −1 ≤ x ≤ 1, and −1 ≤ y ≤ 1 are

to be selected. These equations can be solved by iteration to yield the optimal values of f1

and f2 for impulse application.
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