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Abstract

This paper presents an analytical solution to the problem of optimal rendezvous using

power-limited propulsion, for a spacecraft in an elliptic orbit in a gravitational field. The

derivation of the result assumes small relative distances, but does not make any assumption

on the eccentricity of the orbit, and does not require numerical integration. The results are

generalized to include the possibility of different weights on the control effort for each axis

(radial, along-track, and out-of-plane). When the weights on control efforts are unequal,

several integrals are used whose solutions may be represented by infinite series in a small

parameter dependent on the eccentricity. A methodology is introduced where the series

can be extended trivially to as many terms as desired. Furthermore, for a given numerical

tolerance, an upper bound on the number of terms required to represent the series is also

obtained. When the weights are equal for all the three axes, the series representations are

no longer necessary. The results can easily be used to design optimal feedback controls
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for rendezvous maneuvers, or for generating initial guesses for two-point boundary value

problems for numerical solutions to the nonlinear rendezvous problem.

Keywords

Optimal rendezvous, Power-Limited propulsion, Eccentric orbits, Tschauner-Hempel equa-

tions, Lambert W function
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1. Introduction

The spacecraft rendezvous problem continues to be of great interest. In this problem, the

requirement is one of the design of control algorithms to maneuver one spacecraft (designated

as the chaser), to dock with another (designated as the target). The target may be empty;

in this case the problem is one of relative orbit reconfiguration. However, the underlying

theory is the same irrespective of the real or virtual target, and consequently, the entire class

of relative maneuvers will be known as the rendezvous problem.

The optimal rendezvous problem refers to the design of algorithms, where a performance

index, for example, elapsed time, or fuel required, is minimized. If the distance between the

chaser and target is small when compared with the orbit size of the target, then analysis

is considerably simplified, since the system of equations governing relative motion can be

linearized using the target’s orbit as a reference. The simplest linear model governing relative

motion in a central field is given by Hill’s equations (Ref. 1), which were used by Clohessy

and Wiltshire (Ref. 2) for studying the rendezvous problem and are collectively known as the

Hill-Clohessy-Wiltshire (HCW) model. These equations model relative motion in a local-

vertical, local-horizontal (LVLH) Cartesian frame attached to and rotating with the target.

The HCW model assumes a target in a circular orbit, in a central field. If the target orbit is

eccentric, or if the gravitational field is perturbed, or if relative distance is not small, then
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the HCW equations are no longer useful. The Tschauner-Hempel (TH) equations (Ref. 3)

also constitute a sixth-order model, but are valid for all eccentricities. These equations have

relative position scaled by the radial distance of the target satellite from the planet and

use true anomaly of the target’s orbit as the independent variable, instead of time. The TH

equations are a nonautonomous system with periodic coefficients, and can be solved in terms

of special integrals (Refs. 3–8).

Research on the rendezvous problem is well-represented in the literature. The general

orbital transfer problem has been studied by several authors, too numerous to cite. In this

paper, the focus is on linearized equations of relative motion, since the rendezvous problem

implies that the distance between chaser and target is assumed small. Billik (Ref. 9) used

a differential games approach to design optimal thruster programming laws for the HCW

equations. Edelbaum (Ref. 10) formulated and solved the optimal rendezvous problem in

terms of small orbital element differences. Gobetz (Ref. 11) also used a similar linearization

in orbital element space, with the additional assumption of a near-circular target orbit, but

used a nonsingular element set that extended the validity of the laws to those cases where

eccentricity and inclination are zero - known singularities in the classical orbital element

set. Alfriend and Kashiwagi (Ref. 12) formulated the open-loop, minimum-time rendezvous

problem for elliptic orbits, using the TH equations. Jezewski and Stoolz (Ref. 13) formulated
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the constant-thrust orbital transfer problem, by expressing the gravity field as a third-order

polynomial in time by using two measurements of position and velocity and solving for the

polynomial coefficients. Solutions to the continuous-thrust optimal rendezvous problem in

a linearized gravity field, using the TH equations as a base, have been explored extensively

by Refs. 4, 14, 15, among others. Although these references characterize the problem, they

do not solve it. Primer vector theory was also used to analyze the problem of impulsive

rendezvous, by Carter and Brient (Ref. 16). Inalhan et al. (Ref. 17) used linear programming

to obtain velocity impulses optimally, for the establishment of satellite formations, using the

TH equations. Euler (Ref. 18) approached the rendezvous problem by attempting to find an

open-loop optimal control to the TH equations, for the standard low-thrust, limited-power

quadratic cost function. However, a completely analytical solution could not be found,

and results were obtained by restricting the equations to first order in eccentricity. Carter

and Brient (Ref. 19) and Carter (Ref. 20) proposed a method to solve the problem posed

by Euler (Ref. 18), but the procedure requires the numerical integration to evaluate a key

matrix, for a complete solution. Coverstone-Carroll and Prussing (Ref. 21) solved the linear-

quadratic regulator problem for circular orbits, using power-limited propulsion, and with

control applied to both the target and chaser vehicles. Recent work by Zanon and Campbell

(Ref. 22) developed an approximate solution for optimal open-loop, bounded-input control
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for rendezvous near elliptic orbits, using Carter’s solution (Ref. 6) to the TH equations as

a basis. In this work, spline approximations were used for certain key integrals; however,

closed-form solutions to these integrals were presented by Sengupta (Ref. 23).

In this paper, the fuel-optimal problem, for the linear system with quadratic cost (LQ

problem) is solved by the use of several key integrals and functions of the eccentric anomaly.

This is a natural consequence of the analytical solution to the TH equations. The more

general power-limited cost function is first analyzed, where it is assumed that the weights

on the control cost corresponding to the three axes of the rotating frame, are different. In

this case, the appearance of several integrals whose closed-form analytical solutions are not

yet known, is noted. However, series solutions to such integrals are developed, and it is

shown that these solutions can be trivially extended to arbitrary order. Furthermore, an

upper limit on the number of terms required for convergence within a desired tolerance is

also obtained in a straightforward manner; and for practical purposes, the problem is solved

completely. In the simpler, restricted case, where the in-plane weights are equal to each

other (but not necessarily equal to the out-of-plane gain), no such integrals appear, and a

closed-form, analytical solution is obtained to this problem.

The analysis in this paper is summarized as follows: the system model is first presented,

and the optimal control problem is posed. The development of the analytical feedback control
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law is then presented, followed by numerical examples to demonstrate its efficacy.

2. Relative Motion Equations

The relative motion equations are defined in the rotating Cartesian, LVLH frame attached

to the target. This frame has basis vectors {ir iθ ih}, with ir lying along the radius vector

from the Earth’s center to the satellite, ih coinciding with the normal to the orbital plane

of the target satellite, and iθ = ih × ir. Let ρ = xir + yiθ + zih denote the relative position

vector of the chaser, with x, y, and z denoting the displacement along the radial, along-track,

and out-of-plane directions, respectively, that have been scaled by the radial distance of the

target from the Earth. The TH equations for rendezvous near a Keplerian elliptic orbit with

arbitrary eccentricity 0 < e < 1, can be written in the following state-space representation:

x′ = A(f)x+B(f)u, (1)

where x ∈ X ⊂ R6, u ∈ U ⊂ R3, A : R≥0 → R6×6, B : R≥0 → R6×3, and the following hold:

x =

{
ρ

ρ′

}
= {x y z x′ y′ z′}> , B(f) =

1

(1 + e cos f)3

[
O3

13

]
,

A(f) =

[
O3 13

Ã(f) Ω

]
, Ã(f) =

 3/(1 + e cos f) 0 0

0 0 0

0 0 −1

 , Ω =

 0 2 0

−2 0 0

0 0 0

 .(2)

In the above, ( ′ ) denotes a derivative with respect to the true anomaly of the target, f ,

and O3 and 13 denote the 3 × 3 zero and identity matrices, respectively. The case e = 0,
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corresponding to a target in a circular orbit, is avoided because the true anomaly is no

longer defined in this case. This singularity may be removed by the use of nonsingular

orbital elements, at the cost of more complicated expressions. This approach has not been

explored here since a considerable amount of literature has been devoted to rendezvous near

a circular orbit.

It should be noted that the dimensional control acceleration uappl is obtained by the

transformation uappl = (µ/p2)u where the semiparameter p = a(1− e2).

The unforced TH equations can be solved (Ref. 3), by using a special integral, known as

Lawden’s integral (Ref. 8), which is expressed in terms of the eccentric anomaly, E. The

eccentric and true anomalies are related by the following equation (Ref. 24):

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (3)

The special integral may be reformulated as shown in Refs. 4–7 to remove several artificial

singularities. In this paper, the approach as shown in Ref. 7 is considered, to yield the

following solution to the unforced TH equations:

x(f) = c1 cos f (1 + e cos f) + c2 sin f (1 + e cos f)

+
2c3
η2

[
1− 3e

2η3
sin f (1 + e cos f) k(f)

]
, (4a)
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y(f) = −c1 sin f (2 + e cos f) + c2 cos f (2 + e cos f)

−3c3
η5

(1 + e cos f)2 k(f) + c4, (4b)

z(f) = c5 cos f + c6 sin f, (4c)

where η =
√

1− e2. The generalized relative velocity components can be obtained by taking

the derivative of (4) with respect to f , resulting in the following expressions:

x′(f) = −c1(sin f + e sin 2f) + c2(cos f + e cos 2f)

−3ec3
η2

[
sin f

(1 + e cos f)
+

1

η3
(cos f + e cos 2f) k(f)

]
, (5a)

y′(f) = −c1(2 cos f + e cos 2f)− c2(2 sin f + e sin 2f)

−3c3
η2

[
1− e

η3
(2 sin f + e sin 2f) k(f)

]
, (5b)

z′(f) = −c5 sin f + c6 cos f. (5c)

In (4) and (5), the function k(f) is obtained from Kepler’s equation (Ref. 24), which can

either be represented in integral form using the true anomaly, or the eccentric anomaly, or

in terms of elapsed time ∆t since epoch as shown below:

k(f) =

∫ f

f0

η3

(1 + e cos f)2
df = (E − e sinE)− (E0 − e sinE0) = l − l0 = n∆t. (6)

In (6), n =
√
µ/a3 is the mean motion of the target’s orbit, and l is the mean anomaly.

Consequently, the use of k(f) conveniently allows elapsed time from epoch, to appear in
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the solution to the TH equations. It may be noted that the dimensional, unscaled state

vector composed of relative position and velocity variables, can be obtained by multiplying

the vector {x y z x′ y′ z′}> by the following matrix:

[
p/(1 + e cos f)13 O3√

(µ/p) e sin f 13

√
(µ/p) (1 + e cos f)13

]
. (7)

It is clear that the states at any value of true anomaly can be written in the form

x = L(f)c where c = {c1 · · · c6}>, and the (j, k)th entry of L is the term with ck as a

coefficient, in the expression for the jth component of the state vector. In particular, let

the initial conditions be denoted by x0 = {x0 y0 z0 x
′
0 y
′
0 z
′
0}>, specified at arbitrary initial

true anomaly f0. It can be shown that detL = 1, and if M denotes the inverse of L, then

M = adjointL. It follows that c = M(f0)x0, where:

c1 = − 3

η2
(e+ cos f0)x0 −

1

η2
sin f0 (1 + e cos f0)x

′
0

− 1

η2
(2 cos f0 + e+ e cos2 f0)y

′
0, (8a)

c2 = − 3

η2

sin f0(1 + e cos f0 + e2)

(1 + e cos f0)
x0 +

1

η2
(cos f0 − 2e+ e cos2 f0)x

′
0

− 1

η2
sin f0(2 + e cos f0)y

′
0, (8b)

c3 = (2 + 3e cos f0 + e2)x0 + e sin f0 (1 + e cos f0)x
′
0 + (1 + e cos f0)

2 y′0, (8c)

c4 = − 1

η2
(2 + e cos f0)

[
3e sin f0

(1 + e cos f0)
x0 + (1− e cos f0)x

′
0 + e sin f0y

′
0

]
+ y0, (8d)
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c5 = cos f0 z0 − sin f0 z
′
0, (8e)

c6 = sin f0 z0 + cos f0 z
′
0. (8f)

As shown by Yamanaka and Ankersen (Ref. 7), the state transition matrix (STM) for the

unforced TH equations is easily formulated by noting that

x = L(f)M(f0)x0 = Φxx(f, f0)x0. (9)

Other examples of STMs are provided in Ref. 6, 25–27. The STM derived in Ref. 26,

although explicit in time, is valid for low eccentricities of the target’s orbit. The STM for

motion perturbed by Earth oblateness effects was derived in Ref. 27, and is identical to that

in Ref. 25 if oblateness effects are ignored. This paper uses a formulation similar to Ref. 7

due to the use of relative position coordinates that are scaled by the radius of the target’s

orbit.

3. Cost Function for the Minimum-Fuel Problem

Depending on the requirements of the mission, different cost functions may be employed

to pose the optimal control problem. For example, Alfriend and Kashiwagi (Ref. 12) for-

mulated the open-loop, minimum-time rendezvous problem for elliptic orbits, using the TH

equations. The fuel cost for engines using power-limited propulsion Jfuel is proportional to
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the integral of the 2-norm of the control over time, and is given by (Refs. 28, 29):

Jfuel ∝
∫ T

0

u>u dt (10)

where t is the time, and T is the specified final time. However the cost function that is used

for minimization in this paper, is of a more general form, given by:

J ∝
∫ T

0

u>Rudt (11)

The matrix R ∈ R3×3 > 0 is a weight matrix, and it is usually sufficient to select R =

diag{R1, R2, R3}. When R1 = R2 = R3, J is proportional to the fuel cost. The inclusion of

this matrix in the cost function allows for better tuning when two or more thrusters are used,

and one thruster is required to fire preferentially over the others. For example, control effort

in the radial direction may not be efficient in some cases, as was demonstrated by Starin

et al. (Ref. 30) for formation flight maneuvers near circular orbits. The radial control effort

can be penalized by selecting the associated weight appropriately. Euler (Ref. 18) and Carter

(Ref. 20) analyzed the optimal control problem with identical weights, although Ref. 18 also

has shown that the system is controllable with no radial thrust, for all three axes.

To ensure consistency with the formulation of the dynamical equations, it is necessary to

change the independent variable in (11) from time, t, to the true anomaly, f . This introduces

an additional factor of (1+e cos f)2 in the denominator, as can be observed from (6). Without
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loss of generality, the following cost function is used for power-limited propulsion:

J =
1

2

∫ fT

f0

u>Ru

(1 + e cos f)2
df, (12)

where f0 and fT are the known true anomaly values of the target, corresponding to epoch

and final time. It will be shown in this paper that when R1 6= R2, the development of a

completely analytical solution is hindered by the appearance of some integrals whose closed-

form solution is not yet known. This is a consequence of the appearance of (1+e cos f)2 in the

denominator of (12). This inconvenience can be avoided by choosing a periodic gain matrix

R, that cancels such terms. Although the control law resulting from this approach is not

strictly power-limited fuel-optimal, it is still an optimal law, and has the additional advantage

of penalizing the use of control near the periapsis of the orbit. Although the difference in

the cost resulting from the use of the different laws is not negligible for moderate or high

eccentricities, nonlinear effects in such studies will dominate (Ref. 31), and the application

of linearized analysis is limited in scope.

4. Optimal Control Problem

For the system with dynamical equations governed by (1), and with a cost function (12),

it can be shown that the necessary conditions for optimality (Ref. 32) yield the following
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conditions for the control u and costates λ ∈ R6:

λ′ = −A>(f)λ, (13a)

u = −R̃−1(f)B>(f)λ, (13b)

where,

R̃(f) =
1

(1 + e cos f)2
R. (14)

For the augmented linear system comprising states and costates, the values of x and λ at

any time are given by the STM Φ. Consequently, the initial values of λ can be found by the

following:

{
x′

λ′

}
=

[
A(f) −B(f) R̃−1(f)B>(f)

O6 −A>(f)

]{
x

λ

}

⇒

{
x(f)

λ(f)

}
= Φ(f, f0)

{
x(f0)

λ(f0)

}
, (15a)

Φ =

[
Φxx Φxλ

Φλx Φλλ

]
⇒ λ0 = Φ−1

xλ (fT , f0)xT − Φ−1
xλ (fT , f0)Φxx(fT , f0)x0. (15b)

Thus, the LQ problem can be solved if Φxx, Φλλ, Φxλ are known. Of these, Φxx is given by

(9). The STM for the costates (Ref. 20) can be obtained by observing that the Hamiltonian

system comprising x and λ leads to a state transition matrix that is symplectic in nature.

If = denotes the matrix of appropriate order that is analogous to the imaginary number
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ı =
√
−1, (15) implies that Φ=Φ> = = or

[
Φxx Φxλ

Φλx Φλλ

][
O6 16

−16 O6

][
Φ>xx Φ>λx
Φ>xλ Φ>λλ

]
=

[
O6 16

−16 O6

]
. (16)

Resolving the matrix multiplication, and comparing the block matrices on both sides leads

to four equations, one of which is

ΦxxΦ
>
λλ − ΦxλΦ

>
λx = 16. (17)

However, if x is not present in the cost function (as is the case considered here), λ does not

depend on x, and Φλx = O6. It follows that

Φλλ(f, f0) =
[
Φ>xx(f, f0)

]−1
= M>(f)L>(f0). (18)

From (18) and (13b), the solution to the forced system corresponding to (1), is:

x = Φxx(f, f0)x0 −
∫ f

f0

Φxx(f, s)B(s) R̃−1(s)B>(s) Φλλ(s, f0)λ0 ds (19)

= Φxx(f, f0)x0 + Φxλ(f, f0)λ0. (20)

The cross-component matrix Φxλ can be obtained by comparing (19) and (20) and is given

by

Φxλ(f, f0) = −
∫ f

f0

Φxx(f, s)B(s) R̃−1(s)B>(s) Φλλ(s, f0) ds
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= −L(f)

(∫ f

f0

M(s)B(s) R̃−1(s)B>(s)M>(s) ds

)
L>(f0) (21)

= −L(f) [N(f)−N(f0)]L
>(f0), (22)

where

N(f) =

∫
M(f)B(f) R̃−1(f)B>(f)M>(f) df. (23)

5. Analytical Solution to the Rendezvous Problem

The problem is completely solved if the symmetric matrix N(f) in (23) is obtained

analytically. It is convenient to define ri = 1/Ri, i = 1 . . . 3, and to treat N(f) as the sum

of three matrices, corresponding to the weights along the three axes of the rotating frame.

Consequently,

N(f) = r1N
(r)(f) + r2N

(θ)(f) + r3N
(3)(f). (24)

By virtue of the fact that the in-plane and out-of-plane dynamics are uncoupled, the matrix

N (3) only has N
(3)
5...6,5...6 as non-zero elements, and conversely, N (r) and N (θ) only have N

(r)
1...4,1...4

and N
(θ)
1...4,1...4 as non-zero elements. Furthermore, derivations reveal that when the in-plane

weights are equal, i.e. R1 = R2, the matrix N(f) is composed of completely closed-form,

analytical expressions. This, however, is only a specific case, and excludes all cases where it

may be necessary to preferentially use one in-plane control. When R1 6= R2, it is observed
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that the expressions require the integration of functions whose analytical solutions are not

yet known. This problem is explained, and solved, in detail in the next section.

For a more general formulation of the control problem, it is assumed that the weights are

unequal, and consequently, it is found useful to rewrite (24) as the following:

N(f) = r1
[
N (r)(f) + (1− σ)N (θ)(f)

]
+ r3N

(3)(f)

= r1
[
N (1)(f) + σN (2)(f)

]
+ r3N

(3)(f), (25)

where,

N (1)(f) = N (r)(f) +N (θ)(f), N (2)(f) = −N (θ)(f), σ = 1− r2
r1
. (26)

For convenience, the matrices N (1) and N (2) are rewritten as the sum of the following com-

ponents:

N (1) = N (13)E3 +N (12)E2 +N (11)E +N (10) (27)

N (2) = N (22)

∫
E2 df +N (21)

∫
E df +N (2c1)

∫
E cosE df +N (2s1)

∫
E sinE df

+N (2c2)

∫
E cos 2E df +N (2s2)

∫
E sin 2E df +N (20)

∫
dE

(1− e cosE)

+N (20c1)

∫
cosE dE

(1− e cosE)
+N (20s1)

∫
sinE dE

(1− e cosE)

+N (20c2)

∫
cos 2E dE

(1− e cosE)
+N (20s2)

∫
sin 2E dE

(1− e cosE)

+N (20c3)

∫
cos 3E dE

(1− e cosE)
+N (20s3)

∫
sin 3E dE

(1− e cosE)
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+N (20c4)

∫
cos 4E dE

(1− e cosE)
+N (20s4)

∫
sin 4E dE

(1− e cosE)
. (28)

For clarity, the superscripts in (28) are used to denote the integral to which the matrices

correspond. The matrices N (1...3) can be obtained easily with the aid of a symbolic algebra

tool such as Maple R©, and are provided as appendices, in terms of the eccentric anomaly,

E. Since the matrix N is now known analytically, the cross-component transition matrix,

Φxλ is also known analytically. Consequently, from (15), the initial costates for given initial

and final conditions, and initial and final true anomalies, can be determined analytically. If

the initial conditions and initial true anomaly are replaced by the current states and current

true anomaly, then (15) essentially provides a feedback control law, without the necessity of

solving the Riccati equation (Ref. 32) numerically for this system.

The methodology described above can also be extended to the intercept problem, where

the final velocity of the chaser is unconstrained. In this case, the final values of the costates

corresponding to the velocity components, λ4,5,6(fT ) = 0. Therefore, the number of boundary

conditions is unchanged. The initial values for the costates can still be obtained from the

state transition matrix Φ for the Hamiltonian system comprising x and λ; however, the rows

require rearrangement to obtain the appropriate block matrices. Consequently, Φxλ still

requires evaluation by the use of the matrix N .
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6. General Case of Unequal Weights and Special Integrals

It is observed from (26), that when the in-plane weights are equal, r2 = r1, and σ = 0. In

this case, the matrix N (2) is not required, and completely closed form solutions are possible.

When the in-plane weights are unequal, σ 6= 0, the matrix N (2) is required, and it can be

shown that this requires the following integrals:

∫
cosmE dE

(1− e cosE)
,

∫
sinmE dE

(1− e cosE)
, m = 1, . . . , 4. (29)

For any m ≥ 0, the solutions to (29) can be obtained by solving the following integral:

Im =

∫
exp(ımE) dE

(1− e cosE)
(30)

Upon changing the variable of integration to χ = exp(ıE), it can be shown that

Im =

(
2ı

e

)∫
χm dχ

(χ− ε)(χ− 1/ε)
, (31)

ε =
√

(1− η)/(1 + η). (32)

Decomposing (31) into partial fractions, Im is solved as follows:

Im =

(
ı

η

)[∫
χm dχ

(χ− 1/ε)
−
∫

χk dχ

(χ− ε)

]
(33)

=

(
ı

η

)[m−1∑
j=0

1

εm−j−1

χj+1

(j + 1)
+

1

εm
ln (χ− 1/ε)−

m−1∑
j=0

εm−j−1 χj+1

(j + 1)
− εm ln (χ− ε)

]
. (34)
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It is readily shown that

χj+1 = cos(j + 1)E + ı sin(j + 1)E. (35)

Some algebra and half-angle formulae can be used to show that

ln(χ− 1/ε) =
1

2
ln(1− e cosE) + ı

1

2
(E − f) + const, (36a)

ln(χ− ε) =
1

2
ln(1− e cosE) + ı

1

2
(E + f) + const. (36b)

Using (36) in (34) and comparing real and imaginary parts, one obtains

∫
cosmE dE

(1− e cosE)
= −1

η

m−1∑
j=0

sin(j + 1)E

(j + 1)

(
1

εm−j−1
− εm−j−1

)
−E

2η

(
1

εm
− εm

)
+

f

2η

(
1

εm
+ εm

)
, (37a)

∫
sinmE dE

(1− e cosE)
=

1

η

m−1∑
j=0

cos(j + 1)E

(j + 1)

(
1

εm−j−1
− εm−j−1

)
+

1

2η

(
1

εm
− εm

)
ln(1− e cosE). (37b)

Closed-form solutions to
∫
E df ,

∫
E2 df ,

∫
E sinmE df ,

∫
E cosmE df , (m = 1, 2) are

not yet known. In this section, series solutions to these indefinite integrals are developed,

and their convergence properties are discussed. From (3), it can be shown that

df

dE
=

η

1− e cosE
. (38)

Using (37), the following Fourier series in harmonics of the eccentric anomaly can be devel-
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oped:

1

(1− e cosE)
= γ0 +

∞∑
k=1

γk cos kE, (39a)

γ0 =
1

2π

(
I0

∣∣∣
E=2π,f=2π

− I0
∣∣∣
E=0,f=0

)
=

1

η
, (39b)

γk =
1

π

(
Ik

∣∣∣
E=2π,f=2π

− Ik
∣∣∣
E=0,f=0

)
=

2εk

η
. (39c)

It follows that (38) may be rewritten as

df =

[
1 + 2

∞∑
k=1

εk cos kE

]
dE. (40)

Consequently, it can be shown that

∫
E df = Ef − E2

2
+ 2

∞∑
k=1

εk

k2
cos kE, (41a)

∫
E2 df = E2f − 2E3

3
+ 4E

∞∑
k=1

εk

k2
cos kE − 4

∞∑
k=1

εk

k3
sin kE, (41b)

∫
E sinE df =

2η

e

∞∑
k=1

εk

k2
sin kE − 2η

e
E
∞∑
k=1

εk

k
cos kE

=
η

e
E ln

[
2(1− e cosE)

(1 + η)

]
+

2η

e

∞∑
k=1

εk

k2
sin kE, (41c)

∫
E cosE df =

ε

2
E2 +

1

e
E(f − E) +

2

e

∞∑
k=1

εk

k2
cos kE, (41d)

∫
E sin 2E df =

2η

e2
E ln

[
2(1− e cosE)

(1 + η)

]
− 2η

e
(sinE − E cosE)

+
4η

e2

∞∑
k=1

εk

k2
sin kE, (41e)
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∫
E cos 2E df =

ε2

2
E2 +

(2− e2)
e2

E(f − E)− 2η

e
(cosE + E sinE)

+
2(2− e2)

e2

∞∑
k=1

εk

k2
cos kE. (41f)

In the above equations, the arbitrary constants of integration have been ignored since these

equations are evaluated with lower limit f0 and upper limit fT (E0 and ET , respectively).

Although (41) are composed of convergent infinite series for all values of e < 1, in practice,

not all terms are required for computation. The series depend on a parameter ε < 1, and

beyond a certain value of k = kmax, the contribution of higher-order terms will be numerically

insignificant. Therefore, the series may be truncated at the prescribed value kmax, which can

be derived by studying the convergence properties of the following general expression:

q
∞∑
k=1

εk

kp
exp(ıkE) (42)

where p ∈ Z>0 and q ∈ R.

A value for kmax is sought such that terms in the above series where k > kmax contribute

less than 10−Ntol , where Ntol is a number denoting the desired numerical tolerance within

which the truncated series representation must agree with the (unknown) true solution. This

tolerance can be chosen to satisfy any requirement. For example, suitable choices for Ntol

are the tolerance used to solve Kepler’s equation numerically, or the tolerance employed for
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numerical integration. This requirement is represented by the following inequality:

∣∣∣∣∣q
∞∑

k=k∗

εk

kp
exp(ıkE)

∣∣∣∣∣ ≤ 10−Ntol , (43)

where

k∗ = kmax + 1. (44)

It is easily observed that:

∣∣∣∣∣q
∞∑

k=k∗

εk

kp
exp(ıkE)

∣∣∣∣∣ ≤ |q|
∞∑

k=k∗

εk

kp
. (45)

The following inequality is developed for the sum on the right hand side of (45):

|q|
∞∑

k=k∗

εk

kp
= |q| εk∗

[
1

k∗p
+

ε

(k∗ + 1)p
+

ε2

(k∗ + 2)p
+ · · ·

]
≤ |q| εk∗

[
1

k∗p
+

ε

k∗p
+

ε2

k∗p
+ · · ·

]
=

|q|
(1− ε)

εk
∗

k∗p
. (46)

Consequently, a solution to the following equation is desired:

|q|
(1− ε)

εk
∗

k∗p
= 10−Ntol , (47)

or,

cek
∗ + p ln k∗ = cN , (48)
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where,

ce = − log ε, cN = Ntol log 10 + log |q| − log(1− ε). (49)

Equation (48) is rewritten as the following:

k̄ exp(k̄) =
ce
p

exp

(
cN
p

)
, (50)

where k̄ = (ce/p) k
∗. Equation (50) yields the following solutions for kmax:

kmax = dk∗e − 1 =


d (cN/cε) e − 1, p = 0

⌈
(p/ce) W

(
exp (cN/p) ce/p

)⌉
− 1, p > 0

, (51)

where d·e is the ceiling operator that denotes the smallest integer larger than the argument,

and W denotes the Lambert W function (Ref. 33). Although efficient methods exist to

evaluate the Lambert W function (Ref. 34), a second-order Newton-Raphson solution, that

is correct for q = 1, p ≤ 3, Ntol ≤ 15, and e ≤ 0.99, is given by the following:

kmax =

⌈
cN
ce

{
1− 2p (cN + p) log (cN/ce)

[2(cN + p)2 + p2 log (cN/ce)]

}⌉
− 1. (52)

Figure 1 shows the number of terms at which the infinite series with p = 2, may be termi-

nated, for tolerance values of Ntol = 9 (solid), Ntol = 12 (dashed), and Ntol = 15 (dotted). It

is observed that kmax rises drastically, beyond an eccentricity of e = 0.9. However, it is worth

noting first, that this is only a matter of concern when the in-plane weights are unequal.
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Second, as noted earlier, at high values of eccentricity, the dynamics of the problem are

perturbed greatly by nonlinearity effects (Ref. 31), and an optimal control based on linear

analysis is no longer sufficient even for small relative distances. Third, it is easy to generate

higher-order terms from lower-order terms recursively. For example,

cos(k + 1)E = cos kE cosE − sin kE sinE, (53a)

εk+1

(k + 1)2
=

ε

(1 + k−1)2
· ε

k

k2
. (53b)

Fourth, the series representations only require evaluation at the initial and final values of

true or eccentric anomaly, and do not require numerical integration. Finally, even though

the number of terms required may be large, kmax is known a priori, and no convergence tests

or arbitrarily large choices are required. Accuracy may be sacrificed for a reduction of the

number of terms; for example, it is still possible to obtain an accuracy of 10−9 at e = 0.95

with 40 terms in the series, instead of an accuracy of 10−15 using 80 terms.

7. Numerical Simulations

In this section, the analytical results are compared with the numerical solution to the

two-point boundary value problem given by (15), for three sets of weights:

(i) R1 = R2 = R3 = 1,

(ii) R1 = 100, R2 = R3 = 1,
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(iii) R1 =∞, R2 = R3 = 1.

All examples assume a target orbit eccentricity of e = 0.4, and use the following initial and

final conditions:

f0 = 0.61087, x0 = {0 1 0 0.5 0 1}>, (54a)

fT = 20.71705, xT = {1 0 2 0 − 1.71429 0}>. (54b)

The difference between the final and initial true anomalies corresponds to approximately

three revolutions of the target about the Earth, in its orbit. It is worth noting that as fT

increases, the amount of time taken by numerical integration employed by shooting methods,

also increases.

It is first assumed that R1 = R2 = R3 = 1. Since σ = 0, it is not necessary to evaluate

the matrix N (2) or the series given by (41). Upon evaluating the matrices in the appendix,

N is calculated, and the initial costate vector is as follows:

λ01 = {0.19338 − 0.00317 − 0.02156 0.02658 0.10683 − 0.03163}>. (55)

In the second case, it is assumed that R1 = 100, R2 = R3 = 1; that is, the control

law penalizes the use of radial thrust. In this case the series solutions to evaluate N (2) are

made use of. It is assumed that the series solution is truncated to only as many terms as
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are required to guarantee an accuracy of 10−14. The particular choice of e = 0.4 results in

η = 0.91652 and ε = 0.20871. Using these values of η and ε, and Ntol = 14 in either (51) or

(52) provides the following values for the number of terms required in the series:

p = 2, kmax = 17; p = 3, kmax = 15. (56)

Therefore, the series used to calculate the matrix N (2) may be restricted to 17 terms only.

The advantage of the formulation in this paper is immediately obvious in the fact that the

required number of terms can be calculated at any stage of the maneuver, only requires

the desired tolerance and eccentricity of the target orbit, does not depend on the relative

trajectory or boundary conditions, and does not require numerical integration.

Using the set of weights as specified above, the initial costates are obtained as follows:

λ02 = {0.25136 − 0.00326 − 0.02156 0.02853 0.11908 − 0.03163}>. (57)

Finally, the radial control effort is completely removed by choosing R1 =∞, R2 = R3 = 1.

Numerically, this is performed by choosing r3 = 1, r1 = 0, but r1σ = 1, in (25) and (26),

which results in r2 = 1. The initial costates for this case are given by:

λ03 = {0.21560 − 0.00326 − 0.02156 0.02855 0.11921 − 0.03163}>. (58)
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The values of λ01, λ02, λ03 obtained by solving the two-point boundary value problem

agree with (55)-(58) respectively, within the tolerance of 10−12 prescribed for numerical

integration. Numerical simulations for the three cases are shown graphically by Fig. 2,

Fig. 3, and Fig. 4. In all three figures, the solid line depicts the case with equal weights

(R1 = R2 = R3 = 1), the dashed line depicts the case with penalized radial control (R1 = 100,

R2 = R3 = 1), and the dotted line depicts the case with no radial control. The relative

trajectory is shown in Fig. 2, where the circle and square are used to show the initial and

final relative position. Penalizing the radial control changes the optimal trajectory, from the

solid line (equal weights) to the dashed line (unequal weights). But turning off the radial

control effort completely, the dotted line is obtained, and it is observed that the trajectory

is nearly the same as that obtained by unequal weights. In all three cases, the boundary

conditions are satisfied.

From Fig. 3, the use of R1 = 100 reduces the magnitude of radial control effort to

approximately 10−4 (dashed line), which is three orders of magnitude lower than the along-

track or out-of-plane control effort. The use of R1 = ∞ results in a magnitude of radial

control effort of exactly zero, as shown by the dotted line, although this is indistinguishable

from the second case, given the scale of the figure. The along-track control history differs for

all three cases, because this control has to compensate for the cases where the magnitude of
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the radial control effort is reduced by unequal weights (dashed line), or zero radial control

effort (dotted line). The variation of along-track control is indistinguishable in the last two

cases. The out-of-plane control effort is identical in all three cases, as is easily evident from

the fact that the third and sixth components of the initial costate vectors given by (55)-(58),

are equal.

The cost for rendezvous, Jfuel, is calculated from (10), and is shown in Fig. 4. Penalizing

the radial control effort only increases the total cost slightly, as can be observed by comparing

the dashed line with the solid line. Forcing the radial control effort to zero, as shown by the

dotted line, does not result in a change in cost that is visible on the scale.

8. Conclusions

In this paper, the problem of power-limited, continuous-thrust optimal rendezvous near

elliptic orbits in a central field, has been solved analytically. The general case of unequal

weights for radial, along-track, and out-of-plane thrusts, requires the evaluation of several

integrals whose solutions are best represented by series in a small eccentricity-dependent

parameter, and it is shown that these series may be truncated effectively within any numerical

precision desired. The use of unequal weights also demonstrates how penalizing the radial

control effort results in an optimal control law using along-track and out-of-plane thrusts

only. Since the costates can be determined without integration or numerical methods, for
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any given initial and final conditions, the theory is also sufficient to design effective optimal

feedback controls, or for receding horizon control. The number of operations are limited

to the evaluation of the eccentric and true anomalies from the current time, the sines and

cosines of the anomalies, the evaluation of the number of terms from the Lambert W function

or its approximation, and the evaluation of the matrices in the appendices. This number is

far smaller than the number of operations required for numerical integration and numerical

solution to a two-point boundary value problem for the linear rendezvous problem. Finally,

the initial costate values determined analytically, can serve as suitable initial guesses for

iterative numerical procedures used to solve the nonlinear rendezvous problem.

Appendix A: Matrices N (1) and N (3) (R1 = R2)

The nonzero components of the symmetric matrices, N (13), N (12), N (11), and N (10), in

terms of the eccentric anomaly, E, are given as follows:

N
(13)
44 =

3

η11
, N

(13)
24 = eN

(13)
44 , N

(13)
22 = eN

(13)
24 ,

N
(12)
34 =

3

2η6
, N

(12)
23 = eN

(12)
34 , N

(12)
44 =

9e

η11
sinE, N

(12)
24 = eN

(12)
44 , N

(12)
22 = eN

(12)
24 ,

N
(11)
11 =

5

2η7
, N

(11)
14 = − 6

η8
sinE, N

(11)
12 = eN

(11)
14 , N

(11)
34 = −eη

2

2
N

(11)
14 , N

(11)
23 = eN

(11)
34 ,
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N
(11)
22 =

3e4

2η11
cos 2E +

12e(1 + 3e2)

η11
cosE +

1

2η11
(5 + 23e2 + 13e4),

N
(11)
24 =

3e3

2η11
cos 2E +

6(1 + 8e2 − e4)
η11

cosE +
e

2η11
(25 + 24e2 − 8e4),

N
(11)
33 =

1

η
,

N
(11)
44 =

3e2

2η11
cos 2E +

12e(5− e2)
η11

cosE +
1

2η11
(8 + 62e2 − 33e4 + 4e6),

N
(10)
11 = − e

12η7
sin 3E +

3

4η7
sin 2E − 15e

4η7
sinE,

N
(10)
12 =

e

12η8
cos 3E − 3(1 + e2)

4η8
cos 2E − 27e

4η8
cosE,

N
(10)
13 = − 2

η3
sinE,

N
(10)
14 =

e2

12η8
cos 3E − e(7− e2)

4η8
cos 2E − (32− 5e2)

4η8
cosE,

N
(10)
22 =

e(1− e2 − e4)
12η11

sin 3E − 3(1 + e2 + 2e4)

4η11
sin 2E − 3e(23 + 61e2 + e4)

4η11
sinE,

N
(10)
23 =

e3

4η6
cos 2E +

2(1 + 3e2)

η6
cosE,

N
(10)
24 =

e2(1− 2e2)

12η11
sin 3E − e(7 + 7e2 − 2e4)

4η11
sin 2E − (32 + 253e2 − 26e4 − 4e6)

4η11
sinE,

N
(10)
33 =

e

η
sinE,

N
(10)
34 =

e2

4η6
cos 2E +

2e(5− e2)
η6

cosE,

N
(10)
44 = − e5

12η11
sin 3E − e2(23− 13e2 + 2e4)

4η11
sin 2E − e(304− 28e2 − 25e4 + 4e6)

4η11
sinE.

The nonzero components of the symmetric matrix N (3), in terms of the eccentric anomaly,

31



are given as follows:

N
(3)
55 =

1

2η5
E +

e

12η5
sin 3E − 1

4η5
sin 2E − e

4η5
sinE,

N
(3)
56 =

e

12η6
cos 3E − (1 + e2)

4η6
cos 2E +

5e

4η6
cosE,

N
(3)
66 =

(1 + 4e2)

2η7
E − e

12η7
sin 3E +

(1 + 2e2)

4η7
sin 2E − e(11 + 4e2)

4η7
sinE.

Appendix B: Matrix N (2) (R1 6= R2)

The nonzero components of the symmetric matrices used to evaluate N (2) are shown

below:

N
(22)
44 = − 9

η10
, N

(22)
24 = eN

(22)
44 , N

(22)
22 = eN

(22)
24 ,

N
(21)
34 = − 3

η5
, N

(21)
23 = eN

(21)
34 , N

(21)
14 =

3

2η4
N

(21)
23 , N

(21)
12 = eN

(21)
14 ,

N
(2c1)
14 =

6

η9
, N

(2c1)
12 = eN

(2c1)
14 ,

N
(2s1)
22 =

12e(1 + e2)

η10
, N

(2s1)
24 =

3(2 + 7e2 − e4)
η10

, N
(2s1)
44 =

6e(5− e2)
η10

,

N
(2c2)
14 = − 3e

2η9
, N

(2c2)
12 = eN

(2c1)
14 ,

N
(2s2)
24 = −3e(1 + e2)

2η10
, N

(2s2)
44 = −3e2

η10
, N

(2s2)
22 = N

(2s2)
44 ,
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N
(20)
11 = −(16 + 19e2)

8η7
, N

(20)
13 = − 3

2η3
, N

(20)
22 = −(16 + 33e2 + 16e4)

8η9
, ,

N
(20)
24 = −e(40 + 33e2 − 8e4)

8η9
, N

(20)
33 = −η, N (20)

44 = −e
2(100− 39e2 + 4e4)

8η9
,

N
(20c1)
11 =

7e

η7
, N

(20c1)
13 =

2

η3
, N

(20c1)
22 =

e(1 + e2)

η9
, N

(20c1)
24 =

e2(7 + e2)

4η9
, N

(20c1)
44 =

e3(5− e2)
2η9

,

N
(20s1)
12 =

e(6 + 5e2)

2η8
, N

(20s1)
14 =

e2(27− 5e2)

4η8
, N

(20s1)
23 =

2(1 + e2)

η4
, N

(20s1)
34 =

e(5− e2)
η4

,

N
(20c2)
11 = −(4 + 3e2)

2η7
, N

(20c2)
13 = − e

2η3
, N

(20c2)
22 =

2(1 + e2)2

η9
, ,

N
(20c2)
24 =

e(1 + e2)(5− e2)
η9

, N
(20c2)
44 =

e2(5− e2)2

2η9
,

N
(20s2)
12 = −(8 + 11e2)

4η8
, N

(20s2)
14 = −e(20− e2)

4η8
, N

(20s2)
23 = − e

2η4
, N

(20s2)
34 = eN

(20s2)
23 ,

N
(20c3)
11 =

e

η7
, N

(20c3)
22 = −e(1 + e2)

η9
, N

(20c3)
24 = −e

2(7 + e2)

4η9
, N

(20c3)
44 = −e

3(5− e2)
2η9

,

N
(20s3)
12 =

e(2 + e2)

2η8
, N

(20s3)
14 =

e2(7− e2)
4η8

,

N
(20c4)
11 = − e2

8η7
, N

(20c4)
22 = − 1

η2
N

(20c4)
11 , N

(20c4)
24 = eN

(20c4)
22 , N

(20c4)
44 = eN

(20c4)
24 ,

N
(20s4)
12 = − e2

8η8
, N

(20s4)
14 = eN

(20s4)
12 .
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List of Figure Captions

Figure 1: Variation of Number of Terms Required for Convergence (kmax) with
Target Orbit Eccentricity (e)

Figure 2: Unscaled Relative Trajectory in LVLH Frame, Equal Weights (Solid),
Unequal Weights (Dashed), R1 =∞ (Dotted)

Figure 3: Optimal Control History Variation with Elapsed Time, Equal Weights
(Solid), Unequal Weights (Dashed), R1 =∞ (Dotted)

Figure 4: Fuel Cost, Equal Weights (Solid), Unequal Weights (Dashed), R1 =∞
(Dotted)
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