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This paper presents a novel solution to the problem of air traffic flow management under 

airspace capacity uncertainty arising from weather or environmental effects. The traffic 

flow management problem is formulated as a stochastic Linear Program with multiple 

available routes between origin-destination pairs, with the weather/environmental factors 

constraining the probable capacities along these routes. The performance index consists of 

the delays introduced by deterministic and stochastic capacity constraints. Primary impact 

of the weather/environmental factors is to require the rerouting of aircraft, causing 

additional delays. These additional delays require the aircraft to carry additional fuel or to 

incur costs associated with the failure to meet the schedules in hub-spoke operations. Thus, 

the variance of delays can be used to define the degree of risk in stochastic traffic flow 

management, and flow management algorithms that assure the variations in the delay below 

a specified value can be considered as providing a hedge against uncertain weather or 

environmental factors. The algorithm developed in this paper produces a risk-hedged 

decision that results in the least delay at a specified level of acceptable variance. This 

algorithm represents a dramatic departure from the more traditional stochastic traffic flow 

management algorithms which minimize expected value of delays, without attempting to 

control their variances. The performance of the present stochastic traffic flow management 

algorithm is demonstrated on a Use Case representing National Airspace System operations 

on a regional scale. 

I. Introduction 

The impact of stochastic airspace capacity on the National Airspace System (NAS) is a well-studied 

phenomenon. Uncertainty in airspace capacity originates in the unpredictability associated with atmospheric hazards 
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or climate disruptions, which refer to any phenomenon that adversely impacts NAS capacity and its ability to 

perform efficiently. Examples include volcanic ash, which is an infrequent problem, but can make large areas of the 

airspace unavailable, or weather events, which are more frequent, but a localized problem. By some estimates [1,2], 

the eruption of the Eyjafjallajökull volcano in Iceland resulted in a loss of $200 million a day for the worldwide 

aviation industry, and totaled $1.7 billion over the duration of the emission of ashes into the atmosphere. Further 

losses to trade, due to logistical issues, were not accounted for in these studies. A detailed study of the impact of 

volcanic ash hazard on the performance and delays in the National Airspace System (NAS) is given in [3]. Although 

the immediate impact of an atmospheric hazard is on the capacity of the enroute airspace, in some cases, airports or 

terminal area operations can also be affected. For instance, portions of the airspace are inaccessible due to the 

potential damage that volcanic ash can cause on aircraft components [4]. Similarly, fog, or marine stratus, is a 

known problem at San Francisco International Airport affecting the Airport Acceptance Rate and Airport Departure 

Rate (AAR and ADR respectively) at the airport. Adverse weather can also affect capacity indirectly through an 

increase in controller workload, possibility of airport closure, and congestion on the airport surface [3]. 

Efforts have been made to model the disruption in NAS operations due to many atmospheric hazards, and 

statistical studies of the NAS have been performed with these models [6-7]. If trajectories of all flights and the 

future capacity of the NAS resources are known exactly, then traffic flow management (TFM) performed is 

deterministic in nature. Deterministic TFM is well understood [8-21], and computationally feasible algorithms are 

known that can manage NAS traffic while minimizing overall system delay. Under many circumstances, 

deterministic TFM models cannot accommodate demand (traffic) and capacity uncertainty, resulting in increased 

delays and conflicts in schedule. Such situations are explored in [22], where a study evaluated the robustness of a 

deterministic TFM algorithm, viz. the Bertsimas-Stock Patterson (BSP) model [23,24],  in the presence of 

uncertainty. 

Deterministic TFM optimization methods such as the BSP model obtain TFM directives (e.g. ground hold and 

airborne delays), but once these directives are incorporated in flight’s schedule, the efficiency of operations in the 

NAS can be ascertained a priori. However, variability in demand and capacity due to extraneous factors can cause 

deviation from the nominal performance and result in additional delays.  

 This paper presents a novel stochastic TFM algorithm that can manage traffic in the presence of uncertainties. 

In this work, uncertainty in capacity is stressed upon, mirroring the prevalent opinion that one of the major 

challenges in future TFM will the ability “to make good decisions in the presence of uncertainty in the prediction of 

weather” [25]. Results can be extended to address demand uncertainty formulations [26-33]. However, demand 

uncertainty is beyond the scope of this paper. 

To motivate the relationship between stochastic weather phenomena and the stochastic TFM, consider Figure 

1, which shows probabilistic thunderstorm forecasts from the National Oceanic and Atmospheric Administration 

(NOAA), in terms of confidence curves. It is evident that to a route which completely avoids any possible 

interaction with weather, e.g. the 10%, threshold may require an unreasonably long route. More importantly, even 

within the region of high probability (where ‘high’ is a set threshold, say 70%), weather is essentially probabilistic, 

and can be represented by a set of weather realizations, with associated probability values.  
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A schematic diagram showing three weather scenarios is shown in Figure 2. Each scenario has an associated 

probability    and interacts with the nominal route of an aircraft flying between a given origin / destination pair. The 

weather phenomena are depicted by solid, dashed, and dotted curves. 

When a weather scenario is realized, the flight will likely have to modify its route in response to the weather. 

Therefore, a number of reroutes can be calculated, starting from the end of the common trajectory, which an aircraft 

flies before any knowledge of the specific weather instance is available (although the statistical data may be 

available).  The reroutes in response to weather are shown as solid, dashed, and dotted trajectories in Figure 3. 

Depending on which weather scenario is ultimately realized, the flight will follow one of the trajectories. Since 

trajectories are generally of different length, this causes the entry time of the flight into a downstream Sector to be a 

stochastic quantity, and consequently, the arrival time at the destination airport is also a stochastic quantity whose 

stochasticity is linked to the probabilistic behavior of weather. The sample flight times for each scenario are shown 

as the values t1, t2, and t3 in this figure. A strategy which seeks to minimize the expected value of delay without any 

consideration of the variance is known as a risk-neutral strategy. 

It is possible to follow other strategies. For instance, Figure 4 depicts an intermediate strategy where the flight 

follows the same weather avoidance route for two scenarios (depicted as the solid line), and a different route for the 

third scenario, depicted by the dashed line. Since the route flown in response to the first two scenarios is longer than 

the route flown in response to the first scenario in the risk-neutral strategy, the expected value of the delay time 

increases as shown at the top of Figure 4, but the variation in the delay from the mean decreases. An extreme 

strategy is shown in Figure 5, where the flight follows the indicated reroute regardless of which weather scenario is 

realized, because this route avoids all simulated scenarios. However, the flight time using this route is the largest 

among the three. Using this risk-averse strategy, the expected delay is the largest; however, the variance is zero. 

The relationship between expected delay, variation in delay, and choice of strategy motivates a multi-objective 

tradeoff. Multi-objective problems that balance mean throughput against variance are common in financial 

engineering [34], where the mean throughput is interpreted as the expected return-on-investment of a portfolio, and 

the variance is interpreted as the associated risk. A portfolio in the context of financial engineering is a convex 

combination of resources with known return and risk, where the decision variables are the proportions with which 

each resource is selected. 

Stochastic TFM with an aim to maximize mean throughput or to minimize mean delays are alone not sufficient 

for probabilistic TFM. Recent works in the literature [35-39] have addressed the issue of minimizing the expected 

value of delays using either an LP framework or flow-based optimization. Stochastic Linear Programming has also 

been used by Clare and Richards [40] to obtain TFM solutions with probabilistic capacity constraints, although [40] 

allows for capacity violations, and does not address the resulting variability in performance.  

The authors believe that the work presented in this paper is the first to address the management of variance in 

addition to delay minimization TFM. This is an important result, because – as noted earlier – NAS operations are 

typically designed for expected value of performance whereas inefficiency is caused by a variation in this value.  

This paper is organized as follows. Section II introduces the concept of risk in TFM and describes methods to 

manage risk using stochastic programming. Section III describes the formulation of a stochastic TFM in the LP 
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framework. Section IV contains details of the Use Case which serves as the feasibility demonstration of the risk-

management algorithm. Conclusions, summary, results, and directions for future work are presented in Section V. 

II. The Concept of Risk in TFM and Risk-Management Using Stochastic Programming 

Since risk is a concept that is used extensively in this work, it requires a definition at the outset. Every TFM 

algorithm based on optimization, for example, those listed in Section I, requires the minimization or maximization 

of a cost function. For instance, the BSP [23], BLO [41], and AAEP [42] models typically minimize the ground and 

airborne delays, number of cancelled flights, and the amount of deviation along a flight segment; or a combination 

of any of the above. Depending on the specific nature of the problem, additional components can also be introduced 

in the cost function. The TFM algorithm produces a set of directives, e.g. the amount of ground delay/stop or 

airborne holding and route selection. The optimization is subject to constraints on the dynamics of the flight and the 

available resources such as Sector capacity. 

In the presence of capacity uncertainty, the cost function can take different values in response to a specific 

realization of the capacity constraint. For instance, if there is a probability associated with a downstream Sector for a 

flight being blocked, the flight may require a longer reroute. This paper defines Risk as the variation in the cost 

function in response to stochasticity. It needs to be clarified at the outset that Risk in the context of this work is not 

the probability that a flight will encounter weather. The TFM problem in this work requires all flights to avoid all 

given realizations of the weather. 

A. Using the Spread of a Distribution to Characterize Risk 

To further develop the concept of risk, Figure 6 presents a depiction of two probability distributions, both of 

which assign a probability to the value of an objective function. The first distribution has a considerably smaller 

“spread”, and if the normal distribution is assumed, this translates into a smaller value of the variance. The 

implication of the smaller variance is that one can assure with 99.7% confidence that the value of the objective 

function, i.e. system delay, will be within the 3-sigma range of the expected delay. On the contrary, from the 

distribution on the right, the 99.7% confidence only exists for a significantly larger range around the expected value. 

A larger range of uncertainty has implications on efficient operation of airlines, especially in a hub-and-spoke 

configuration. If an airline is unable to guarantee with a high level of confidence that a flight will reach its 

destination within a certain range of its expected arrival time, then this may impact connecting flights and turn-

around times significantly. Furthermore, the likelihood of an extreme event occurring, e.g. an extremely large 

deviation from the mean delay, is significantly higher when the spread of the distribution is large. 

B. Relationship between Stochastic Weather and Capacity Uncertainty 

Adverse weather directly affects NAS performance by limiting resources that may be available to the flights. 

As noted before, fog at the San Francisco International Airport often limits runway operations and impacts the 

aircraft acceptance or departure rates. In this work, the focus is on enroute capacity uncertainty, although the 

algorithms and analysis can be generalized to include airport capacity uncertainty. 
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Although Sector capacity determination is an open area of research [44-49], a starting point for nominal Sector 

capacity assessment is the Sector’s Monitor Alert Parameter (MAP) value. The uncertainty in Sector capacity is 

most easily derived by an area-based measure, which calculates the area of overlap between the weather 

phenomenon in a realization, with the Sectors of interest. This is schematically shown in Figure 7, where a weather-

affected area, depicted by the polygon, interacts with a Sector of interest, shaded in gray. Depending on what 

fraction of the Sector intersects with the weather, and given the probability of occurrence of a scenario, a histogram 

of capacities, ranging from zero to maximum capacity     , can be constructed. This procedure is independent of 

the LP formulation or solution and can be performed offline. 

The quality of the histogram depends on the number of scenarios available, but only to an extent, since only 

integers can be used to represent MAP values. 

C. Strategies for Risk Management 

Several strategies may be employed to manage risk in TFM; some of which are described here. These are 

depicted in Figure 8. One possible strategy is to design a route that avoids the mean of all realizations of the 

weather. However, since there is a finite probability for each realization occurring (possibly based on forecast or 

simulations), the “mean weather” may never be realized, and a reroute will be required when one of the weather 

realization occurs. This is shown in Figure 8(a), where the planned route is shown as the dashed line. Consequently, 

a reroute will be required, depicted by the solid line. However, solving for a reroute once the flight has already 

departed on its nominal trajectory will require another TFM optimization problem, and the feasibility of the solution, 

i.e. a new feasible trajectory may not be available. 

The second strategy, shown in Figure 8(b), is to calculate a reroute for all weather realizations, and travel on 

the mean path, depicted by the dashed line. However, this strategy does not mitigate the probability with which 

adverse weather will be encountered, and the flight will be forced to fall back on Strategy 1, i.e. plan a reroute from 

the point at which weather impacts the trajectory. 

The third strategy, shown in Figure 8(c), is to travel on a route that avoids all simulated weather realizations. 

This is known as a risk-averse strategy, and can cause unnecessary delays especially if the weather realization did 

not ultimately require a longer reroute. Furthermore, there are no guarantees on the expected delay, although the 

variation in the delay may be small. 

The fourth strategy, shown in Figure 8(d), divides the trajectory of an aircraft into two segments. The first 

segment is known as the first stage, and is common to all routes designed to avoid the weather realization. This is 

shown as the dark line in the figure. The second segment, known as the second stage or recourse stage, consists of 

reroutes designed to avoid each weather scenario provided to the flight, which are depicted by the lighter solid line, 

dashed line, and dotted line. The first stage trajectory is designed to guarantee feasibility of each of the recourse 

trajectories. Consequently, the flight does not need to solve another TFM problem if adverse weather is encountered. 

The strategy for a flight, i.e. the choice of a reroute in response to a weather realization, will affect the expected 

value of the system delay as well as its variation. When the TFM problem is solved by minimizing the expected 
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value of system delay over all scenarios, this is known as a risk-neutral strategy, and is generally posed as a two-

stage stochastic linear program. This is described in the next section. 

D. Stochastic Linear Program to Solve the Two-Stage Recourse Problem 

Stochastic Linear Programs [50] (SLP) are generally modeled as two-stage recourse problems. The uncertainty 

in the problem is modeled by defining a finite number of scenarios             with associated probabilities of 

occurrence             . In the context of weather-related uncertainty, the values of        can be obtained from 

probabilistic weather forecast, described in Section IIB.  

The general form of a two-stage recourse problem is as follows 
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(2) 

In the foregoing equations,   is the first-stage decision variable that does not respond to the uncertain scenario 

 . It is determined before any information regarding the uncertainty data has been obtained. On the other hand,    is 

the second-stage decision variable that is determined after deriving the observations regarding the uncertainties. 

Note that a different recourse decision    will be made when the  th scenario is realized. The goal of the two-stage 

model is to identify a first-stage solution   that is well-positioned against all possible manifestations of the uncertain 

scenarios in the future. An optimal first-stage solution   will tend to have the property that leaves the second stage 

in a position to exploit the advantageous scenarios without excessive vulnerability to disadvantageous scenarios.   

The constraint matrix   and the constraint vector   are the deterministic constraints that are completely 

independent of the uncertainty. The objective function coefficients or cost for the first stage variables are given by  . 

The recourse costs       are a function of the first-stage decision   and the uncertain data associated with the  th 

scenario. The objective function coefficients or costs for the recourse variables are given by   . The uncertain 

constraints are defined by the matrices    and    and vector   , known as the technology matrix, recourse matrix, 

and resource vector, respectively. The two-stage recourse problem takes the following form: 
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E. Exploring the Pareto Frontier in the Mean-Variance Tradeoff Space 

The solution to the linear program given by Eq. (3) seeks to maximize the expected value (mean) of the cost 

over all possible scenarios. However this linear program does not explicitly consider the variance of the recourse 

costs over all possible scenarios. Modern Portfolio Theory (MPT) [34] states that the variance can be treated as a 

measure of risk and that there exists a trade-off in the mean-variance space as shown in Figure 9. Since the linear 

program given by Eq. (3) maximizes mean without considering the variance it gives the risk-neutral solution shown 

in Figure 9. 

If the objective function seeks to minimize the variance of the recourse costs, the solution obtained will be the 

risk-averse solution. However, including the variance in the objective function will make the programming problem 

quadratic. The present research develops a linear programming formulation that generates the Pareto front of 

optimal solutions in the mean-variance space. Once the Pareto front is generated, the solution that maximizes the 

mean at a given level of acceptable risk can be determined as shown in Figure 9. 

F. Generating the Pareto Frontier by Solving the LP with Reduced Variance   

The problem of minimizing the variance in the recourse costs            for various scenarios        can 

be posed as a linear program similar to Eq. (3) with additional constraints that limit the deviation of the recourse cost 

from the mean recourse cost. 

The first step is to solve the risk-neutral stochastic linear program given by Eq. (3). Let    denote the mean of 

the recourse costs over all possible scenarios for the solution to Eq. (3). The mean recourse cost can be calculated 

from the scenario costs as shown below: 

              

 

   

 (4) 

The deviation    of the recourse cost for the  th scenario from the mean recourse cost is given by the following 

expression: 

               (5) 

Let            denote the maximum deviation over all scenarios. The main idea is to iteratively solve the linear 

program posed by Eq. (3), by adding constraints which limit the deviation of the recourse costs from the mean to be 

smaller than the maximum deviation at the previous iteration. Thus the additional constraint to be imposed for the 

 th scenario is given by the following: 

                 ,        (6) 

The set of absolute value constraint shown in the foregoing equation can be replaced by the following two sets of 

linear constraints: 

       
         

         
(7) 
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This approach requires    additional constraints in the stochastic linear program. Since the recourse costs and their 

mean are linear functions of the decision variables, the constraints can be written as follows:   

       
  
         

           
          

        

   
         

           
          

        
(8) 

The modified linear program obtained upon inclusion of the    additional constraints is given as follows: 

        

           
     

      
  

 
 
 
 
 
 
  
  
 
   

 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

    

  
    

        
      

       
 

        
     

      
 

     
         

       
 

    
         

      
 

     
      

          
 

    
     

          
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
  
 
   

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

 
  

  
  
  
  
 

  
   

 
 
 
 
 
 
 
 
 
 
 

 

 

                

(9) 

It is worth noting that Eq. (8) can be modified so that the Pareto frontier exhibits different outcomes. For 

example, it may be of interest to penalize positive delays only, i.e. early arrivals are not penalized. In this case, only 

the first of the two constraints in Eq. (8) are necessary. 

The next section formulates the risk-hedging stochastic LP for TFM. 

III. Deterministic and Stochastic LP Formulation for TFM 

A complete description of the Mixed-Integer Linear Program (MILP) formulation for Stochastic Air Traffic 

Flow Management Rerouting Problem (SATFMRP) is given in [41] and [42]. In this section, some of the key 

definitions and constraints are presented. The notation in this paper follows that used in [41] and [42], and the 

decision variable of interest will be referred to as the BLO variable.  

A. Decision Variable and Data Sets 

The variable of interest in this formulation is      
 , a binary variable, i.e. 0 or 1. A value of 1 indicates that 

flight   (member of set  ), reaches Node Y from Node X, by time interval     using an arc connecting the two 

nodes. Nodes X and Y belong to set    that is composed of all nodes on the route(s) of flight  . The sets    and 

   denote the set of nodes corresponding to departure and arrival airports, respectively. Since an airport in general 

is both a departure as well as an arrival airport,        . Let   
     and   

     denote departure and 
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arrival airport nodes for flight  , respectively. Node     
   denotes the departure airport boundary, and     

   

denotes the arrival airport boundary. The distinction between an airport node and its boundary node is to allow for a 

detailed model for ground holds and runway delays. 

The arc    is a member of set                that is composed of all arcs on the route(s) of flight  . 

The set   
               and   

               are the set of nodes that have arcs from Node X and 

leading into Node Y respectively, for flight  . 

Whereas sets    and    denote all possible nodes and all possible arcs for flight  , the sets   
     and 

  
     denote the nodes and arcs corresponding to the scheduled route of flight  . The variables      ,   , and    

denote the travel time (number of time periods) for flight   over arc XY, the scheduled departure time period, and 

the scheduled arrival time period, respectively. It is noted in [42] that  
    

      
  

  
      

     
       

       
  

   . In other words, a flight reaches the departure airport boundary immediately after leaving the departure airport 

node, and a flight reaches the arrival airport node immediately after leaving the arrival airport boundary. It also 

follows that 

      
             

     
 

 
(10) 

In other words, the scheduled arrival time of the flight is given by the sum of the departure time and flight times 

along scheduled route segments. Furthermore,       and       denote the maximum and minimum number of time 

segments for flight   on arc XY. 

The 0-1 BLO variables can be used to determine quantities of interest for TFM. For instance, the time segment 

in which the flight   reaches node   is denoted by      and given by the following summation: 

      
              

       
    

       
    

  
(11) 

It follows from Eq. (11) that given the time of entry at a node and the time of entry at a preceding node, the number 

of time intervals required to travel on the arc connecting the nodes can be calculated. Additional quantities such as 

sector counts (given the arcs belonging to a sector) can also be calculated, as detailed in [41] and [42]. 

B. Constraint Formulation 

The variables are linked with constraints resulting from the spatio-temporal definition of the graph. The so-

called flight structure constraints define the continuity in time and space for a flight. The temporal continuity 

constraints [42] are represented by the following linear inequalities and equalities: 

      
     
         

         
               

     
         

               
               

(12) 

where      
  is the set of feasible time units in which a flight   can reach Node Y from Node X over the arc 

connecting the two nodes, and       is the smallest set of consecutive time intervals that contains      
 . These 



 

 

 

American Institute of Aeronautics and Astronautics 

 

 

10 

constraints state that if a flight was in node   by time period  , then this must also hold true for any later time period 

    . 

The spatial continuity constraints [42] are given by the following inequalities: 

      
  

    

       

    
    

       
 

    
    

   
    

       

    
    

                
    

        
(13) 

In the foregoing,      denotes the set of all times units by which a flight   can reach Node Y from any other node 

along the route of that flight. Spatial continuity constraints force connectivity through a node.   

The third set of constraints is composed of those that are derived from airspace capacity. To formulate the 

problem with capacity constraints, the sets   
  

 and   
  

 are defined for a flight   in the  th Sector, as the set of 

nodes entering and leaving the  th Sector. The sector capacity constraints are given by the following [42]: 
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The term inside the first summation of Eq. (14) is equal to 1 only if a flight is in Sector   at time  , and equal to 0 if 

it has not yet entered or has already left Sector   at time  . When summed over all flights, this counts the total 

number of flights in Sector   at time  . This number is constrained to be less than the Sector capacity at that time,   
 , 

for a Sector    .  

Capacity constraints can be derived for airport arrival and departure capacity, but were not used in this work. 

Mechanisms to include arrival and departure capacity constraints are described in [23], which can also explicitly 

model scenarios where the arrival and departure capacity are dependent on each other due to simultaneous operation 

on the same set of runways [51]. 

C. Cost Function Formulation 

In the BLO model, the cost   has contributions from different components, depending on the modeling 

requirements of the problem. A comprehensive list is presented in [42], which not only includes the components 

presented in [41], but also introduces additional terms for greater flexibility in formulating TFM problems. In this 

work, the number of cancelled flights, overall flight ground delays, and airborne delays were penalized. These three 

cost function components, denoted by        ,        , and          , are listed as follows: 
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(17) 

where                   and                   (with constant    and   ) are coefficients such that each 

additional unit of delay from scheduled arrival and departure has a proportionately heavier penalty. 

D. Stochastic LP Formulation 

The foregoing development has been used extensively for deterministic TFM. In the presence of stochastic 

capacity constraints, the Sector capacities   
  in Eq. (14) are uncertain quantities, and as described earlier can be 

sampled based on scenarios. The set of first stage variables for the TFM problem are then composed of all the 

decision variables that are unaffected by stochastic capacity. In the context of TFM, these variables correspond to 

the segment of a flight prior to any Sector whose capacity is stochastic. All variables that do not belong to the first 

stage then belong to the recourse stage. It is easy to see from Eq. (9) that the technology matrices    and recourse 

matrices    are respectively the same regardless of the scenario, and vectors    correspond to different scenarios of 

the capacity constraint given by Eq. (14). 

IV. A Use Case in Stochastic Traffic Flow Management 

The foregoing development of the SLP is now applied to a Use Case. Figure 10 shows the area of interest, viz. 

the north-eastern portion of the continental United States. Five Air Route Traffic Control Centers (ARTCC) are 

considered in the present Use Case: Boston (ZBW), Washington, D.C. (ZDC), Indianapolis (ZID), New York 

(ZNY), and Cleveland (ZOB). Five airports are included in the example: Logan International Airport (BOS), Ronald 

Reagan Washington National Airport (DCA), Detroit Metropolitan Wayne County Airport (DTW), LaGuardia 

Airport (LGA), and a pseudo-airport LVT. The pseudo-airport is a waypoint from the Coded Instrument Flight 

Procedures (CIFP) database that lies along or near routes for flights originating from Dallas-Fort Worth International 

Airport (DFW) and George Bush Intercontinental Airport (IAH) that were not included in the analysis because they 

lie outside the geographical area of interest. The airport DTW is also located close to the jet-routes for flights 

originating from the west coast.  

The Centers are subdivided into Sectors. This is because stochastic capacity constraints are more readily 

enforced at the Sector level than at the Center level, due to the availability of MAP values as a notion of capacity. 

The choice of Sectors in the Use Case has been restricted to those that correspond to the cruise altitude of aircraft. 

This results in the airspace of interest being divided into 89 Sectors, including those from Atlanta ARTCC (ZTL). 

Enroute Sectors from ZTL are also included in this analysis because flights from LVT to DCA, LGA, or BOS may 

be redirected through ZTL in the presence of inclement weather. It should be noted that the number of Sectors used 
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in the LP formulation ultimately depends on the number of Sectors actually encountered by the modeled flights and 

their routes. 

A. Use Case Formulation 

Five weather scenarios are used to introduce stochastic Sector capacities. The weather scenarios were 

generated using echo tops from the NOAA website and superimposed upon the area of interest, as shown in Figure 

11(a) through Figure 11(e). The shape, size, and location of the echo tops were randomly altered in each scenario to 

cover different parts of the Sector layout. Each echo top is converted into a set of distinct convex polygons using k-

means clustering. 

Nominal trajectories are first generated, in the absence of weather. These paths are used to solve the 

deterministic TFM problem with rerouting and serve as the benchmark against which delays in the system are 

evaluated. The nominal trajectories between all airport pairs are shown in Figure 12 as solid lines. These trajectories 

were generated using an A* search among the waypoints from the CIFP database, using distance from the 

destination as the criterion, and do not necessarily correspond to operationally viable routes. The relevant waypoints 

in the region of interest are also shown in this figure, as grey dots.  

A composite of the five weather scenarios is depicted by the shaded area in Figure 12, which depicts the graph-

based abstraction of the NAS It may be observed that all of the nominal trajectories intersect with Sectors that are 

affected by at least one weather scenario. The next step in the development of the Use Case is the identification of 

common paths for multiple routes for a given airport pair. Thereafter, reroutes for each weather realization are 

calculated from these points. The common segments correspond to the first stage of the stochastic program, and each 

of the reroutes starting from the end of the common segment corresponds to a set of recourse variables. 

The stochastic LP is formulated for a 15 flight example, all of which depart their airports at time    . The 

airport pairs are chosen arbitrarily and are given by: LVT-BOS, LVT-DTW, LVT-LGA, LVT-DCA, LGA-LVT, 

LGA-DTW, DCA-DTW, DTW-LGA, LGA-LVT, LVT-BOS, LVT-LGA, BOS-LVT, LGA-DTW, DTW-BOS, 

DTW-LGA. All routes between airport pairs are discretized into a network of nodes connected by arcs. The nodes 

are obtained by calculating the intersection of each route with the Sectors the flight passes through. This results in 

the set    of node pairs XY. 

It is assumed that all flights are cruising with a true airspeed of 400kts. Based on the length of each segment, 

the amount of time is calculated, i.e. the constants       defined in Section IIIA. To reduce the complexity of the 

problem, all values are scaled by a discrete time step of 4 minutes and then rounded (floored) to the nearest integer. 

The structure of the constraint matrix is shown in Figure 13. The LP is composed of 731 first stage variables 

and 4895 recourse variables per scenario; a total of 27208 variables (accounting for additional variables for 

segment-length and path-length deviations). A total of 99460 constraints are generated. The matrix is 99.97% sparse, 

with 337402 non-zero variables. 

The matrix structure for the risk-neutral problem clearly exhibits the Benders’ decomposition [52] blocks, with 

the first stage block (  matrix) in the top left corner, and the five   and   blocks along the rows and the diagonal. 

For the risk-hedged problem, additional constraints are introduced which link all the stages. Additionally, each block 
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exhibits the so-called Dantzig-Wolfe decomposition [53], with matrices along a row depicting the master problem, 

and fifteen blocks along the diagonal of a Bender’s block depicting the subproblem for each aircraft. Note that the 

subproblem blocks are of different size because the number of variables required for each flight depends on the 

number of segments along the path. 

B. Use Case Results 

The nominal route solver, risk-neutral case, and risk-averse cases are solved independently. Since the flight 

time in a link is considered fixed, i.e.                   , path-stretching is not permitted as a solution to the LP, 

and no airborne delays are obtained. Instead, the solution attributes all delays to ground stops. An example of a 

ground stop due to downstream Sector capacity constraints is shown in Figure 14. 

As mentioned before, all flights have a scheduled departure time of    . In this example, two flights from 

LVT are shown in Figure 14, with Figure 14(a) depicting a flight to LGA, and Figure 14(b) depicting a flight to 

DCA. The scheduled departure and arrival times for the two flights result in a downstream Sector capacity constraint 

being violated. As a consequence, the flight to DCA is delayed by one time unit. This figure shows multiple 

trajectories; the choice of which depends on the actual scenario being realized. 

Figure 15 shows the trajectories followed by a flight from LGA to DTW, with Figure 15(a) depicting  the risk-

neutral strategy  and Figure 15(b) depicting the risk-averse strategy. In both figures, the solid lines depict the routes 

followed by a flight for all realizations of the weather, except for Scenario 3. If Scenario 3 occurs, the shaded area 

depicts the coverage of Sectors by inclement weather. In the risk-neutral strategy, the dashed line depicts the 

trajectory followed upon the realization of Scenario 3. Note that the entry and exit times over the common segment 

are identical. In the risk-averse case, it may be observed that flight follows the same trajectory, a route that avoids all 

weather-impacted areas in all scenarios. The risk-averse strategy results in the flight always requiring 22 units of 

time, whereas the risk-neutral trajectory can require 21 or 22 units of time, depending on which weather scenario is 

realized. 

C. Analysis of the Risk-Hedging Strategy  

Figure 16 shows the relative frequency histogram for flight delays, for a variety of risk-hedging strategies. The 

delays for a strategy are calculated by subtracting the nominal flight times (obtained by solving the LP for flights 

with no stochastic weather constraints) from the flight times obtained from a risk-hedging LP. Over a scenario, all 

deviations from scheduled are summed; the result is termed the ‘system delay’. Note that the formulation used in 

this example penalizes all deviations from the scheduled time, including negative delays, i.e. arrivals before 

scheduled time. It is possible to penalize only positive delays, by removing the absolute sign in Eq. (6). In the Use 

Case, all delays are positive since the scheduled time of flight is equal to the time of flight along the nominal 

trajectory, and the time of flight on any other route other than the nominal route is larger than that for the nominal 

trajectory. The mean delay is calculated by adding the system delays weighted by the probability of the scenario. 

In the top left, the histogram for the risk-neutral strategy is depicted. The solid line in all the figures is used to 

depict the expected value of the delay time. The expected value of delay as a result of the risk-neutral strategy is 
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approximately 4 time units. The presence of an outlier results in a Maximum Absolute Deviation (M.A.D.) of 

approximately 20 time units. 

Next, a risk-hedging constraint is imposed such that the permitted M.A.D. is 0.67 times the risk-neutral 

M.A.D. The resulting histogram is shown on the top right of Figure 16. It is observed that the expected delay 

increases to approximately 10 time units, and the M.A.D. reduces to approximately 14 time units, which is 

approximately 67% of 20 time units. 

The bottom left of Figure 16 corresponds to a permitted M.A.D. that is 0.13 times the risk-neutral M.A.D. This 

strategy results in an increase in the expected value of the delay to 24 units. However, the M.A.D. reduces to 3 time 

units, which is approximately 13% of 20 time units. 

Finally, on the bottom right, the result for the risk-averse strategy is shown. This strategy results in all flights 

flying along the risk-averse route that circumvents all weather phenomena. The expected delay increases to 30 time 

units and there is no variation in the delay since all flights follow the risk-averse trajectory regardless of which of 

the five weather scenarios has been realized. 

Although results corresponding to four values of the parameter   are shown in Figure 16, analysis on the Use 

Case was carried out by first starting with the risk-neutral value of M.A.D. and using the floor operator to set the 

value as risk-hedging constraint on the stochastic LP. At the end of an iteration, a new value of M.A.D. and expected 

delay were calculated. The parameter   is equal to the ratio of the new M.A.D. and the risk-neutral M.A.D. This 

process is iterated until the M.A.D. is equal to zero, or no feasible solution is obtained. The result of this iteration is 

shown in Figure 17. The solution for each iterated value of   is depicted by a circle, and is a Pareto-optimal solution 

because it is the solution with minimum cost which satisfies the maximum absolute deviation bound. The Pareto 

frontier is not necessarily convex because only integer solutions are allowed in the problem. The four strategies with 

different values of the iterating parameter   are also shown on this figure.  

D. Computational Aspects of the Problem 

It is clear from Section IVA that the stochastic TFM problem can result in very large scale LPs when 

considering a NAS-wide solution, or for a large number of flights. The Use Case described in the foregoing requires 

approximately 2 hours of computation using a simplex solver from the GNU Linear Programming Kit (GLPK) [54] 

on a single core of a 2.4GHz processor. When the problem is expanded to the NAS, the number of first stage 

variables is expected to increase significantly, but the number of recourse variables can remain bounded especially 

when weather realizations are confined to a smaller region of the airspace. For example, capacity uncertainty due to 

inclement weather on the East Coast will not likely affect flights whose operations are restricted to the West Coast. 

Moreover, the number of variables is dependent on the time interval used for discretizing the problem, and the total 

time horizon over which the solution is desired.  

Computational efforts directed towards solving large-scale LPs is still an area of active research, and a full 

description is beyond the scope of this paper, which is concerned largely with developing a novel framework for 

risk-hedged TFM. However, there are several points that support the feasibility of applying the risk-hedged TFM 

algorithm described in this paper, to larger, NAS-level problems. For example, it should be noted that the GLPK 

implementation of the Use Case did not exploit any specific sparsity pattern or block decomposition. Decomposition 
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techniques for the TFM problem have been described in [55,56]. Recent results described in [57] show that a 

parallel implementation of Dantzig-Wolfe decomposition on Graphics Processing Units can solve very large 

problems with high computational efficiency in real time. Implementation of the risk-hedged TFM algorithm on 

these platforms is a subject of future research. 

V. Conclusions 

This paper demonstrated the feasibility of a new approach to actively manage the risk induced in traffic flow 

management due to the stochasticity of adverse weather. A novel approach has been developed that achieves the 

following: 1) a preliminary definition of risk in traffic flow management due to weather stochasticity and 

demonstrated the applicability of performance-risk tradeoff concepts from Modern Portfolio Theory; 2) an approach 

to map the impact of stochastic adverse weather in terms of the National Airspace System capacity uncertainty; 3) 

risk-management strategies in the Linear Programming framework, and 4) the active control of variance in system 

performance, by sacrificing the expected value of cost. This guarantees the performance bounds on the traffic flow 

management algorithm, while also assuring robustness in the solution.  

A Use Case scenario was presented that reflects National Airspace System operations on a regional scale. The 

Use Case work flow can be extended to more complex networks such as a system-wide formulation for the entire 

National Airspace with several thousand flights. The work advanced in this paper can form the basis for the 

development of a decision support tool. Additional extensions include mechanisms for incorporating user 

preferences in stochastic traffic flow management. Moreover, substantial improvements in the solution speed are 

feasible through the use high-performance computing hardware. For instance, the Linear Program is amenable to 

decomposition techniques and parallel implementation on Graphics Processing Units. These platforms offer 

considerable advantages over standard Linear Program solvers in that they can be used to solve several large scale 

problems with a large number of scenarios and flights in an efficient manner and in real time. 
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Figure 1. NOAA Experimental Thunderstorm Outlook Probability Curves of Weather Impact 

(http://www.spc.noaa.gov/products/exper/enhtstm/) 

 

 

Figure 2. Weather Scenarios and Flight Routes in Response to Scenario Realization 
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Figure 3. Risk Neutral Strategy for Rerouting in Response to Weather Hazard 

 

 

Figure 4. Intermediate Strategy Resulting in Larger Delays and Smaller Variation 
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Figure 5. Risk-Averse Trajectory with No Variation 

 

 

 

Figure 6. Spread of a Probability Distribution as a Measure of Risk 
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Figure 7. Effect of Weather on Sector Capacities 

 

 

(a) Avoidance of the Mean of All Weather 

Realizations 
 

(b) Flying on the Mean of All Possible Reroutes 

 

(c) “Risk-Averse” Trajectory 

 

(d) “Risk-Neutral” Trajectory 

Figure 8. Strategies for Risk Management 
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Figure 9. Mean-Variance Tradeoff 
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Figure 10. The Region of Interest 
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(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 

 

(d) Scenario 4 
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(e) Scenario 5 

 

 

Figure 11. Stochastic Weather Realizations 

 

 

Figure 12. Nominal Routes between Airports 
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Figure 13. Constraint Matrix Structure for 5 Scenarios with 15 Flights 
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(a) Destination LGA 

 

(b) Destination DCA 

Figure 14. Ground Stop at LVT 

 

 

 

(a) Risk-Neutral Strategies for each Weather 

Realization 

 

(b) Risk-Averse Strategy 

Figure 15. Risk-Neutral vs. Risk-Averse Strategy from LGA to DTW 
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Figure 16. Relative Frequency Histogram of Deviations from Mean Delay  

for       ,       ,       ,        
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Figure 17. Pareto-Optimal Solutions for Trade-Off between Mean Delay  

and Maximum Deviation from Mean Delay 

 


