
Optimal Design of Satellite Formation Relative Motion
Orbits Using Least-Squares Methods

Hui Yan,∗ Kyle T. Alfriend,† Srinivas R. Vadali,‡ and Prasenjit Sengupta§

Texas A&M University, College Station, Texas 77843-3141

DOI: 10.2514/1.35044

Formation flying relative orbit design can be achieved by determining six initial conditions in the local-vertical–

local-horizontal frame or, equivalently, six differential orbital elements. In this paper, two novel approaches are

proposed to design perturbed satellite formation relative motion orbits using least-squares techniques. First, it is

shown that the initial conditions required to approximate a desired formation geometry can be analytically solved for

by using the Gim–Alfriend state transition matrix in conjunction with a linear least-squares approach. An

improvement to this method is obtained by using the Gaussian least-squares differential correction approach and

numerical integration of the equations ofmotion of the two satellites. Numerical results are presented to demonstrate

the applications of the two approaches.

I. Introduction

S ATELLITE formation flying has received much attention for
terrestrial observation, communication, and stellar interfero-

metry in recent years, due to the advantages of flexibility and low
cost. Because the analysis of perturbed relative motion of satellites is
very complicated, much effort has been devoted to the simplification
of relative motion dynamic models for the design and propagation of
relative orbits. The first published study in the United States on the
relative motion of close or neighboring satellites was performed by
Clohessy and Wiltshire [1], hence the often used name, the
Clohessy–Wiltshire (C-W) equations. These equations assume that
motion is about a spherical Earth, the reference orbit is circular, and
the distance between the satellites is small compared to the orbit
radius, a basis for linearizing the equations of motion.

Tschauner and Hempel [2] and Lawden [3] derived the relative
motion equations for eccentric orbits. Satellite formation design can
be accomplished by selecting six initial conditions for relative
motion in the local-vertical–local-horizontal (LVLH) frame or,
equivalently, the six differential orbital elements. Inalhan et al. [4]
and Sengupta et al. [5] considered the effects of the reference orbit
eccentricity on the relative motion initial conditions. Gim and
Alfriend [6] obtained the state transition matrix (STM) for relative
motion including the effects of eccentricity and gravity perturbation
J2. Several approximate theories of relative motion were compared
by Alfriend and Yan [7].

Sabol et al. [8] investigated the effect of gravitational pertur-
bations and atmospheric drag on satellite formation designs based on
the solutions of the C-W equations. Alfriend et al. [9] have obtained
the linear relationship between relative motion in the LVLH frame
and differential orbital elements to account for the effects of

eccentricity and gravity perturbation J2. This feature has also been
used by Vadali et al. [10], Alfriend and Yan [7], and Schaub [11] to
design formations in noncircular orbits. A zero-secular along-track
drift condition is used to determine the differential semimajor axis in
[10]. The characterization of the relative orbit geometry is achieved
by relating the rest of the orbital element differences to its shape, size,
and the initial phase angle. Sengupta and Vadali [12] and Lane and
Axelrad [13] parameterize relative motion in terms of integration
constants and differential orbital elements to design relative motion
orbits for eccentric reference orbits, but J2 is not incorporated into the
equations.

In this paper, two novel approaches are proposed to design satellite
formation relative orbits using least-squares techniques. First, it is
shown that the initial conditions required to approximate the desired
formation geometry can be analytically solved for by using the
Gim–Alfriend state transition matrix in conjunction with a linear
least-squares approach. In this approach, the errors between the
STM-predicted relative orbit solutions at a number of points in time
and the corresponding reference values from the C-W equations are
minimized in a least-squares sense to obtain the optimal design. The
Gaussian least-squares differential correction (GLSDC) approach
improves upon the simpler linear least-squares method by using the
nonlinear equations of motion of the two satellites. This approach is
similar to the standard method of orbit determination using GLSDC
[14], the only difference being that the measurements are given by
the reference or desired relative orbit geometry. The GLSDC
procedure can be used for designing relative orbits that are not
necessarily small in size. Several numerical results are included to
demonstrate the applications of the two approaches.

II. Desired Formation Flying Relative Orbit

We use a projected circular orbit (PCO) as an example. A PCO is
an elliptic relative orbit but, as the name implies, it has a circular
projection in the local horizontal plane. In a chief centered LVLH
frame oxyz, a PCO can be described by

x�t� � k1 sin�nt� �0� (1)

y�t� � 2k1 cos�nt� �0� (2)

z�t� � k2 sin�nt� �0� (3)

_x�t� � k1n cos�nt� �0� (4)

_y�t� � �2k1n sin�nt� �0� (5)

_z�t� � k2n cos�nt� �0� (6)
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where

2k1 � k2 � � (7)

In the preceding equations, � is the relative orbit size and �0 is the
in-plane phase angle. The initial phase angle is defined, at the time of
equator crossing of the chief, in the local horizonoyz plane, as shown
in Fig. 1.

Note that x, y, and z are the LVLH Cartesian coordinates, and _x, _y,
and _z are the relative velocity components in this frame. The mean

motion n is given by n�
�����������

�=a3
p

, where � is the gravitational
parameter, a is the semimajor axis, and t is time.

A geometrical method [7,10,12,15] involving the mean orbital
elements has been widely used to design relative orbits. To avoid the
singularity for small eccentricities associated with the classical
elements, a set of nonsingular orbital elements is used in [12]

e� �a; �; i; q1; q2;�� (8)

q1 � e cos! (9)

q2 � e sin! (10)

where e is the eccentricity, i is the inclination, � is the longitude of
ascending node, ! is the argument of perigee, and � is the mean
argument of latitude. The differential orbital elements are determined
from the selected relative motion orbit. They are [12]

�i� �3
p
cos�0 (11)

���� �3
p

sin�0

sin i
(12)

�q1 � q1q2
�1

p
cos�0 � �1 � q21�

�1

p
sin�0 � q2

�

�2

p
� ��cos i

�

(13)

�q2 � q1q2
�1

p
sin�0 � �1 � q22�

�1

p
cos �0 � q1

�

�2

p
� ��cos i

�

(14)
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� ��cos i

�
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�1� ��

�1

p
�q1 cos�0 � q2 sin�0�

(15)

where p is the semiparameter, �1 and �3 are the size parameters
(in-plane and out-of-plane, respectively), �2 is the along-track bias,

�0 is the out-of-plane phase angle, and ��
�������������

1 � e2
p

. The sixth initial
condition, on the differential semimajor axis, is obtained in terms of
nonsingular elements from the result of [10]

�a��0:5J2a
�

Re

a

�

2
�

3�� 4

�4

�

�
�

�1 � 3cos2i�

�

q1�q1 � q2�q2
�2

�

� sin 2i�i

�

(16)

where J2 is the gravitational perturbation and Re is the Earth radius.

III. Formation Design Using Linear Least Squares

The geometrical method uses a mapping between the orbital
element differences and the shape and size parameters of the desired
formation. The differential orbital elements are used to obtain the
initial conditions of the deputy, given the same for the chief. Here, we
use a least-squares method to set up the desired formation flying
relative orbit, that is., determine the initial conditions for the relative
orbit numerically. Because PCO solutions are based on the C-W
equations, the least-squares method is very suitable for minimizing
the perturbations from J2, eccentricity, nonlinearity, and other effects
as well.

The desired values of the relative motion states at the sample
points ti, i� 0; 1; 2; . . . ; m, are obtained from Eqs. (1–6) and are
arranged as follows:

~y � xr � �xTr0;xTr1; . . . ;xTrm�T (17)

where x� �x; _x; y; _y; z; _z�T and the subscript r is used to denote the
reference orbit. Because the reference orbit data of Eq. (17) is
obtained from the solution to the C-W equations, it will not fit the J2
model data exactly, more so for large relative orbits. Thus, the crux of
the problem boils down to choosing the best initial condition to
minimize the residual error between the outputs of the two models.
Let the actual initial condition (hitherto unknown) for the J2 model be
denoted by x0. Using the Gim–Alfriend STM, we have

x i � �i�ti; t0�x0; i� 0; 1; . . . ; m (18)

�0 � I (19)

where �i is the STM relating the states at ti and t0, and I is an identity
matrix.

Define

z � �xT0 ;xT1 ; . . . ;xTm�T (20)

z ��x0 (21)

where�� ��T0 ; �T1 ; . . . ; �Tm�T . Then, the optimal choice for the initial
conditions x0 that minimizes the sum of the squared errors between
the actual and reference values

J� 1
2
�~y � z�TW�~y � z� � 1

2
�~y ��x0�TW�~y ��x0� (22)

is given by

x 0 � ��TW���1�TWxr (23)

whereW is a weighting matrix used to weight the relative importance
of each element. The preceding linear least-squares approach has
limited applicability due to the local linear approximation employed.
A more general approach for determining the best fit J2-perturbed
relative orbit close to a desired C-W orbit is discussed in the
following section.

IV. Formation Flying Design Using Gaussian
Least-Squares Differential Correction

GLSDC was discovered by Gauss as a method to solve a complete
orbit determination problem. This algorithm is the most commonly
applied nonlinear estimation method. Given the initial conditions of
the chief, it is a nontrivial task to determine the initial conditions of
the deputy to generate the desired formation flying relative orbits. InFig. 1 Initial phase angle.
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fact, the initial conditions may not exist for a closed relative orbit
under general perturbations. Here, we consider as the perfect
measurements ~y, the desired formation state as given by Eq. (17) and
use GLSDC to estimate the relative motion initial conditions to make
the generated relative orbits to be as close to the desired orbit as
possible.

The GLSDC finds an estimate x̂0 for x0 that minimizes the cost
function

J� 1
2
�~y � h�x̂0��TW�~y � h�x̂0�� (24)

where h�x̂0� is an estimated output function of the estimated initial
condition x̂0. In the problem of interest, h�x̂0� is a vector consisting
of the states of the relative orbit at time points ti, i� 0; 1; 2; . . . ; m,
obtained from numerical integration of the equations of motion of the
chief and deputy. The guessed or estimated initial relative state x̂0 is
used to obtain the initial conditions of the deputy in the Earth-
centered inertial frame. A correction to the estimate of x0 at the ith
iteration x̂0;i is

�x̂0;i � �HTWH��1HTW�yi (25)

where

�yi � ~y � h�x̂0;i� (26)

and

H � @h
@x

jx0;i

is the Jacobian matrix. The updated equation is

x̂ 0;i�1 � x̂0;i ��x̂0;i (27)

Figure 2 shows the complete GLSDC algorithm for formation
design. In Fig. 2, we assume that the orbital elements of the chief are
known. First, we guess the initial relative state x̂0, from which the
Cartesian initial conditions of the deputy’s orbit can be determined.
We then use the initial conditions of the chief and deputy to integrate
Eqs. (28–33) for each satellite in the inertial frame:

_X � VX (28)

_Y � VY (29)

_Z� VZ (30)

�X���X
r3

�

1 � 3

2
J2

�
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r

�

2
�

5
Z2

r2
� 1

��

� uX (31)

�Y ���Y
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�
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2
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�

Re

r

�

2
�
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Z2
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� uY (32)
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�

1 � 3

2
J2

�

Re

r

�

2
�

5
Z2

r2
� 3

��

� uZ (33)

where X, Y, and Z are the coordinates in the inertial frame, and

r�
�����������������������������

X2 � Y2 � Z2
p

. The inertial frame is defined such that the X
axis points to the vernal point in the equatorial plane of the Earth, the
Z axis is the axis of rotation of the Earth in a positive direction, and Y
is defined by the right-hand rule. For the investigation reported in this
paper, we assume no control acceleration, that is,uX � uY � uZ � 0.
Next, we use Eqs. (34–39) to obtain the relative states x [10]:

x� �r
Trc

rc
(34)

y� �r
T�Hc � rc�
jHc � rcj

(35)

z� �r
THc

Hc
(36)

_x� �v
Trc � �rTvc
rc

� ��rTrc��rTc vc�
r3c

(37)

_y� �v
T�Hc � rc� � �rT� _Hc � rc �Hc � vc�

jHc � rcj

� �r
T�Hc � rc��Hc � rc�T� _Hc � rc �Hc � vc�

jHc � rcj3
(38)

_z� �v
THc � �rT _Hc

Hc
� �r

THc�HT
c
_Hc�

H3
c

(39)

where �r and �v are, respectively, the relative position and velocity
vectors expressed in the inertial frame, andH� r � v is the angular
momentum vector. The subscript c is used to denote the chief.

The Jacobian matrix is

Hk �
@h

@x̂0

� @h

@x̂k

@x̂k

@x̂0

� @h

@x̂k
�k�tk; t0� (40)

where �k�tk; t0� is the state transition matrix. The convergence
function is

�J�
�

�

�

�

Ji�1 � Ji
Ji�1

�

�

�

�

� " (41)

where " is a tolerance parameter.

V. Gim–Alfriend State Transition Matrix

The state transition matrix developed by Gim and Alfriend [6] can
be written using the following notation:

x �t� � fa�t� � �b�t�g�e (42)Fig. 2 Optimal nonlinear relative orbit design.
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x �t� � ��t; t0�x�t0� (43)

where �e is the differential orbital element vector and the STM is

��t; t0� � fA�t� � �B�t�gD�t� ��e�t; t0�D�1�t0�fA�t� � �B�t�g�1
(44)

where �� 3J2R
2
e. The matrixB�t� contains only the terms due to J2,

the STM for the relative mean elements is ��e�t�, and D�t� is the
Jacobian of the mean to osculating element transformation.

VI. Numerical Results

The nonsingular mean elements of the chief’s orbit selected in this
paper are

a� 8000 km; �� 0; i� 50 deg

q1 � 0:01; q2 � 0; �� 0 deg

The following sections present the results obtained by using the two
methods discussed earlier.

A. Formation Design Using Linear Least Squares

The number of the evenly spaced sampling points are selected to
be m� 500 over 10 orbital periods. The required geometric
parameters are chosen as �0 � 0 and �� 100 km. The weighting
matrix W in Eq. (24) is

�W�ij �
�

O i ≠ j

R i� j i; j� 0; 1; 2; . . . ; m (45)

where O is the 6 � 6 zero matrix and R is the 6 � 6 scaling matrix

R � diag�1=R2
e; Re=�; 1=R

2
e; Re=�; 1=R

2
e; Re=�� (46)

The matrixR is selected in terms of the Earth-value units so that the
cost function can be evaluated in canonical units.

The initial conditions resulting from Eq. (23) are

x 0 � ��2:63e � 1; 4:49e � 2; 9:96e1; 4:12e � 4;�1:90e
� 1; 8:91e � 2�T (47)

The units are kilometers and kilometers per second for position
and velocity, respectively. Table 1 lists the mean nonsingular
elements obtained using two different procedures.

In Table 1, IC1 indicates the mean differential nonsingular
elements obtained by using the inverse transformation of Eq. (42)
with the initial conditions x0 from Eq. (23) and the transformation
from the osculating to mean nonsingular elements. The initial
conditions calculated from Eqs. (11–16) by using the geometrical
method are represented by IC2. As can be seen, the initial conditions
obtained from the least-squares method agree very well with those
from the geometrical method. Also, the validity of the period-
matching condition in Eq. (16) is verified by the linear least-squares
technique, because the differential semimajor axis results from the
two approaches match very well. The results of simulating relative
motion by using the two sets of the initial conditions are shown next.

The simulation time is 50 orbital periods. Note that the time span
used for the least-squares procedure is 10 orbits, so the simulation is
40 orbits beyond the least-squares fit span. Figure 3 shows the errors
in the orbit radius due to the least-squares and geometrical method.
The maximum error is about 3% of that of the reference PCO.

The validity of the period-matching condition is further verified by
varying the initial phase angle, as shown in Fig. 4. Data in Fig. 4 are
obtained for initial phase angles separated by 10 deg, using both the
least-squares method and the first-order period-matching condition
of Eq. (16).

Figure 5 evaluates the effect of the least-squares fit span on �a and
compares this result to that obtained from Eq. (16). The two methods
are in excellent agreement except for a fit span of less than one orbit.
The period-matching condition is independent of the fit span, so its
result is constant. The least-squares method is finding the �a that will
minimize the error between the actual and desired PCO. The desired
PCO is based on a circular orbit, but the actual orbit is eccentric.
Therefore, in addition to the secular in-track error resulting, there is a
periodic error due to the eccentricity. For a fit span of less than one
orbit, this periodic error can be significant when compared to the
secular error. As a result, �a obtained from the least-squares
procedure is varying as it tries to compensate for this eccentricity
effect. As the fit span increases, the secular error dominates and the
two approaches agree. (After one orbit, the fit span was chosen to be
integer orbits and the in-track eccentricity error is zero here. If

Table 1 Comparison for the initial conditions of the radius 100 km

�a, km ��, rad �i, rad �q1 �q2 ��, rad

IC1 �2:369e � 1 �1:487e � 4 1.250e-2 2.460e-5 �6:240e � 3 3.685e-5
IC2 �2:372e � 1 �9:376e � 5 1.250e-2 0 �6:251e � 3 0

Fig. 3 Evolution of the error in the radius of the PCO.

Fig. 4 Period matching condition verification.
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computed at smaller intervals, the least-squares curve would oscillate
and asymptotically approach that for the period-matching condition
orbit.) Furthermore, Figs. 4 and 5 reveal that the period-matching
condition provides a good basis for the optimal design of moderately
large formations.

B. Formation Design Using Gaussian Least-Squares Differential
Correction

This section presents the results obtained from the GLSDC
method. The radius of the relative orbit is 100 km. The convergence
of the method has been tested by using three sets of initial guesses.
The first initial guess is obtained from the transformation of the
differential orbital elements of Eqs. (11–16) into a relative initial
state vector. The second initial guess is provided directly by Eqs. (1–
6), evaluated at t� 0. The third initial guess is arbitrarily chosen:
x0 � y0 � z0 � 1 km and _x0 � _y0 � _z0 � 0:001 km=s. The number
of sample points for all the test cases is 500 and the initial conditions
are determined based on a fit span of 10 orbits. The convergence
parameter is set as "� 1e � 8. Our results show that the GLSDC
converges for each initial guess to the same estimate of the initial
state vector. The convergence is very fast and the number of the
iterations is less than 10 for each initial guess. The best fit relative
orbit is shown in Fig. 6 and the stars represent the reference values.

Figure 6 indicates that the relative orbit from the solutions of
GLSDC matches the desired PCO extremely well. To illustrate the
difference between the GLSDC and linear least-squares methods,
Fig. 7 shows the effect of the periodic matching conditions as a

function of the radius of the relative orbit using the geometrical
method, linear least squares, and GLSDC.

In Fig. 7, the solid line presents the variation of �a with � as
obtained from Eq. (16), whereas the plus signs and dashed lines stand
for the solutions from the linear least squares and GLSDC,
respectively. The results obtained from the linear least squares agree
very well with those from the geometrical method, and indicate that
�a is a linear function of the size of relative orbit. The effects of
nonlinearity can be seen for orbit radii greater than 600 km. The
ability of GLSDC to account for nonlinearities and keep the along-
track motion bounded for very large relative motion orbits is shown
in Fig. 8 for a relative orbit radius of 2000 km. Note that out-of-plane
motion cannot be kept bounded without the use of control. Along-
track error growths shown for the three methods for a period of 50
orbits indicate the effectiveness of the GLSDC method.

The �a calculated by the geometrical method, linear least squares,
and GLSDC are �4:7395, �4:7379, and �4:3603 km, respectively.

VII. Conclusions

This paper has shown that least-squares techniques can be used to
design desired satellite formation relative orbits subject to
perturbations. Initial conditions required to best fit the desired
formation geometry can be analytically solved for by using the
Gim–Alfriend state transition matrix in conjunction with a linear
least-squares approach. An improvement to the linear least-squares

Fig. 5 Variation of �a with time.

Fig. 6 Relative orbit iterated from GLSDC.

Fig. 7 Comparison for periodic matching conditions.

Fig. 8 Error growth comparisons in the in-track direction.
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method is obtained by using the Gaussian least-squares differential
correction procedure and numerical integration of the equations of
motion of the two satellites. GLSDC performs better than the linear
least-squares approach, especially for relative orbits that are larger
than 100 km in size. Unlike the geometrical method developed for a
specific gravitational perturbation model, the linear and nonlinear
least-squares methods can handle more general perturbations. The
least-squares methods are not limited to formation flying orbit
design, they can also be applied to other trajectory designs to
optimally accommodate a class of perturbations without incurring
fuel expenditure to cancel their effects.
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