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Expressions for the fundamental natural frequencies associated with J2-perturbed relative motion of satellites in

near-circular orbits are derived. Special values of the orbit inclination, dependent on initial conditions, are obtained,

forwhich the in-plane and out-of-plane fundamental frequencies remain equal to each other over an extended period

of time, resulting in nonprecessing relative orbits. This result validates and generalizes a similar finding, based on

numerical investigations by other researchers. The analysis is extended to the developments of accurate prediction

and control models for fuel-optimal formation maintenance and intersatellite fuel balancing. Numerical simulation

results are presented to demonstrate the accuracy of the developed models and the effects of frequency matching on

control requirements.

Nomenclature

a = semimajor axis
e = eccentricity
i = inclination
J = performance index
J2 = second zonal harmonic coefficient of the Earth’s

gravity field
M = mean anomaly
n0 = two-body mean motion of the chief
nxy = in-plane fundamental frequency of the deputy
nz = cross-track fundamental frequency of the deputy
œ = osculating orbital element vector
�œ = mean orbital element vector
R = radial distance of satellite from Earth
Re = equatorial radius of Earth
t = time
u = acceleration
x = relative position vector
_x = relative velocity vector
xr = reference relative position vector
_xr = reference relative velocity vector
�x; y; z� = relative position coordinates (radial, along-track, out-

of-plane)
� = formation phase angle
� = differential
� = radius of the projected circular relative orbit
�x = amplitude of the radial component of relative motion
�z = amplitude of the cross-track component of relative

motion
��; � = in-plane and cross-track phase angles
� = longitude of the ascending node
! = argument of perigee

Subscripts

0 = referenced to chief
1 = referenced to deputy

Introduction

S ATELLITE formation flying has been an active area of research
over the last decade and continues to attract much attention.

Several missions are being planned to achieve a variety of objectives,
such as the deployment of distributed spacecraft systems and
imaging extra-solar planets [1]. Low thrust requirements for
formation flight applications have also led to the developments of
novel electric thrusters and the use of electromagnetic [2] and
electrostatic forces [3].

Preliminary design of the relative orbits for formation flight is
based typically on the Hill–Clohessy–Wiltshire (HCW) equations
[4], valid for circular reference orbits of the two-body problem. Two,
nontrivial periodic solutions to the HCW equations are the projected
circular orbit (PCO) and the general circular orbit (GCO). The PCO,
which appears circular when viewed along the zenith-nadir
directions of the reference satellite (chief), has been found suitable
for the synthesis of sparse apertures in space. A satellite (deputy) in a
GCO maintains a constant separation distance, in three-dimensional
space, relative to the chief. Relationships between PCO and GCO
position and velocity variables, differential orbital elements, and
integration constants have been presented in various forms in [5–14].
Conditions for establishing bounded relative orbits via nonlinearity
and eccentricity corrections and energy matching have been
provided in [15–19]. A variety of continuous and impulsive control
methods for formation maintenance have also been proposed [20–
26]. A methodology for accommodating the J2 disturbance, for the
dual purposes of minimizing formation-maintenance cost and
balancing the intersatellite fuel budgets, has also been treated in
[12,13].

Coupled, linearized differential equations with periodic
coefficients [27–29] have been developed for J2-perturbed relative
motion. Although these equations allow the application of linear
design methodologies for formation maintenance and control, they
do not provide simple analytical solutions to the motion variables.
Unlike the HCW equations, which admit periodic solutions with the
same natural frequencies for all the three axes, the perturbed
equations exhibit different in-plane and out-of-plane frequencies. It
has been stated, without proof, in [30,31], that the in-plane
fundamental frequency is the anomalistic period, i.e., perigee-to-
perigee period, and that the cross-track motion is based on nodal
crossing of the reference satellite. This difference in the two
frequencies results in the precession of the relative orbit. Recently,
Sabatini et al. [32] used a genetic algorithm-based approach to obtain
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two special values of the orbit inclination, for which the perturbed
relative orbits neither precess nor distort appreciably, over a period of
nearly one day. A detailed explanation of the reasons behind their
numerical observations is one of the contributions of the present
paper.

This paper begins with a geometric description of satellite relative
motion using the unit-sphere approach [33]. The expressions for the
in-plane and cross-track motion variables are linearized to extract the
fundamental frequencies. Formulas for determining the PCO initial
conditions (valid even for nonequatorial circular orbits) are derived
in terms of the classical differential orbital elements. Next, a
condition on the orbit inclination for matching the in-plane and cross-
track fundamental natural frequencies over a finite horizon is
presented. The analysis is extended to relate the natural frequencies
to the control requirements for formation maintenance and fuel
balancing among the satellites in a PCO formation. The inefficiency
of radial thrusting for formation maintenance in the presence of J2 is
formally brought to light via the use of a set of modified HCW
equations. The implementation of a feedback control law based on a
linear quadratic regulator (LQR), augmented by an averaging filter
[34] to remove the short-periodic variations in the relative motion
state variables, is discussed. The paper ends with the presentation of
numerical simulation results validating the analytical models,
followed by the conclusions.

Geometry of Relative Motion

The unit-sphere approach [33] provides analytical expressions for
the relative motion variables in terms of the differential orbital
elements as given here:

x��R0 �R1

8

>

>

>

>

>

<

>

>

>

>

>

:

cos2�i0=2�cos
2�i1=2� cos�������

�sin2�i0=2�sin
2�i1=2� cos�������

�sin2�i0=2�cos
2�i1=2� cos�2�0 �������

�cos2�i0=2�sin
2�i1=2� cos�2�0 �������

�1=2 sin�i0� sin�i1��cos���� � cos�2�0 �����

9

>

>

>

>

>

=

>

>

>

>

>

;

(1)

y� R1

8

>

>

>

>

>

<

>

>

>

>

>

:

cos2�i0=2�cos
2�i1=2� sin�������

�sin2�i0=2�sin
2�i1=2� sin��� ����

�sin2�i0=2�cos
2�i1=2� sin�2�0 �������

�cos2�i0=2�sin
2�i1=2� sin�2�0 ��� ����

�1=2 sin�i0� sin�i1��sin���� � sin�2�0 �����

9

>

>

>

>

>

=

>

>

>

>

>

;

(2)

z� R1f�sin i1 cos i0 � cos i1 sin i0 cos��� sin �1

� sin i0 sin��cos �1g (3)

where x, y, and z are, respectively, the radial, in-plane, and out-of-
plane separations between the two satellites. The subscripts 0 and 1,
respectively, indicate references to the chief and deputy satellites.
The radius of a satellite is denoted by R, �� is the differential
longitude of the ascending node, � is the latitude angle, �� is the
differential argument of latitude, and i denotes the orbit inclination. It
is assumed herein that the reference orbit is nonequatorial.

Equations (1–3) are geometrically exact and valid for large
differences between the respective orbital elements of the two
satellites. Considering mean orbital elements, and by neglecting the
effects of the secular terms in Eq. (3), it can be shown that the out-of-
plane fundamental frequency is the mean motion of the deputy. The
in-plane motion equations are more complicated, involving the sums
and differences of several frequencies. The fundamental frequency
of periodic motion in the two-body problem is the mean motion of the
chief. The fundamental frequencies for perturbed relative motion are
the subjects of the subsequent sections.

It can be shown from Eqs. (1–3) that the following results hold for
small relative motion:

x� R1 � R0 (4)

y� R0������cos i0� (5)

z� R0��i sin �1 � sin i0��cos �1� (6)

Equation (6) is not in its simplest form and can easily be reduced
further by approximating the latitude angle of the deputy by that of
the chief. However, as shown next, such an approximation is not
necessary. Equations (4–6) can be simplified by using first-order
eccentricity expansions for R and �:

R� a�1 � e cosM� (7)

�� !�M� 2e sinM (8)

sin �� sin� � e sin! (9)

cos �� cos� � e cos! (10)

where a, e, !, and M are, respectively, the semimajor axis,
eccentricity, argument of perigee, and mean anomaly. Note that
��M� ! is the mean argument of latitude. For orbits with small
eccentricities, even for small relative motion, �M and �! can be
large, but �� remains small. Hence, trigonometric functions of �M
and �! appearing in the relative motion expressions should not be
approximated by linearization. As will be shown next, the use of
nonsingular elements, for near-circular orbits, is not necessary for
deriving the main results in this paper.

The following equations are obtained by substituting Eqs. (7–10)
in Eqs. (4–6) and neglecting the higher harmonics of motion:

x��a� a0��e1 sin�M� sinM0 � �e0 � e1 cos�M� cosM0�

(11)

y� a0������cos i0 � e0�e1 sin�M��

� 2a0���e0 � e1 cos�M� sinM0 ��e1 sin�M� cosM0� (12)

z� a0

�

�i sin�1 � sin i0��cos�1

�
3

2
e0��i sin!1 � sin i0��cos!1�

�

(13)

It has been shown that unlike for two-body motion, the differential
semimajor axis �a has to beO�J2� for J2-invariant orbits [35] and,
in general, for preventing along-track secular drift [29].
Equations (11–13) show the presence of bias and/or long-periodic
components in all three of the relative motion directions, induced due
to the effects of eccentricity and J2.

In-Plane Natural Frequency for Formations
in Near-Circular Orbits

In this paper, the eccentricity of a near-circular orbit is assumed to
be consistent with the first-order eccentricity expansion, i.e.,
e0 � 0:001. As can be seen from Eqs. (11) and (12), for circular
orbits (e0 � 0), the in-plane fundamental frequency is the mean

motion of the deputy: nxy � _M1. For small formations (�1 km) in
near-circular orbits, e1 � e0. Bounds on the in-plane frequency can
be obtained by representing the aforementioned motion variables by
their respective mean values, secular drift rates, and periodic
components:

x��a� �x sin�M0 � �� (14)
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y� a0f���0� ����0� cos i0 � e0�e1 sin�M�0��g

� a0��
_��� _�cos i0�t� 2�x cos�M0 � �� (15)

where

�x � a0
������������������������������������������������������������������������

��e1 sin�M�2 � �e0 � e1 cos�M�2
p

(16)

�� tan�1
�

e0 � e1 cos�M

e1 sin�M

�

(17)

and t indicates time. The phase angle � is not constant due to the
differential mean anomaly rate. Equations (16) and (17) show that,
for circular orbits, with the use of mean elements, �x is a constant and
����=2��M. For the case of e1 � e0, ���M=2.

An eccentricity-dependent expression for the in-plane frequency
can easily be derived from the preceding information. However, for

the preceding two extreme cases considered, it can be bounded by _M1

and 0:5� _M0 � _M1�. As a further simplification, it is assumed in the

rest of the paper that nxy � _M1 � _M0. This result is in agreement
with the observations made in [30,31].

Cross-Track Fundamental Frequency

The procedure for determining the cross-track fundamental
frequency is similar to that presented in the previous section.
Equation (13) can be represented as follows:

z� �z sin��1 �  � �
3

2
�ze0 sin�!1 �  � (18)

where

�z � a0

�������������������������������������������������������������

�i2 � ����0� �� _�t�2sin2i0

q

(19)

 � tan�1
�

�
����0� �� _�t� sin i0

�i

�

(20)

It can be shown by differentiating Eq. (20) that

_ �
�� _��i sin i0

�i2 � ���sin i0�
2

(21)

As can be seen from the preceding equation, _ is not a constant due to
differential nodal precession. However, focusing attention on a small

time scale and ignoring the effect of � _� in the denominator of the
preceding equation, an estimate of the rate of change of the cross-
track phase angle is obtained as follows:

_ �
�� _��i sin i0

�i2 � ����0� sin i0�
2

(22)

Hence, the cross-track natural frequency nz can be approximated as
shown next:

nz � _M1 � _!1 �
� _��i sin i0

�i2 � ����0� sin i0�
2

(23)

The result presented here is accurate to O�J2� and valid for near-
circular orbits, over a finite period of time (� one day).

Initial Conditions

Procedures for determining the initial conditions for perturbed
PCO and GCO have been presented in [12,13], based on the solutions
to the HCW equations. The treatment herein uses the approximate
solutions to the relative motion variables presented earlier for near-
circular orbits. It is convenient to key in the initial conditions to the
initial state of the chief satellite, but given the form of the

aforementioned natural solutions, they are derived more
conveniently, with respect to the deputy’s mean argument of latitude.

Considering the PCO initial conditions, the assumed forms for the
along-track and cross-track relative motion variables are,
respectively,

y�0� � ��0� cos��1�0� � ��0�� (24)

z�0� � ��0� sin��1�0� � ��0�� (25)

where ��0� is the desired initial phase angle and ��0� is the initial
radius of the PCO, in the y-z plane. Note that, in contrast to the forms
used for describing the natural relative motion variables, the same
phase angle is used for both x�0� and y�0� for the purpose of
establishing PCO initial conditions. Upon comparing Eqs. (15) and
(18) with Eqs. (24) and (25), respectively, it is evident that �x �
0:5��0� and �z � ��0�.

It can be shown from Eqs. (12), (13), (24), and (25) that, for near-
circular orbits, the differential orbital elements can be computed from
the equations shown next:

���0� ����0� cos i0 �
��0�e0

2a0
cos�!0�0� � ��0�� (26)

e1 sin�M�0� �
��0�

2a0
cos�!0�0� � ��0�� (27)

e1 cos�M�0� � e0 �
��0�

2a0
sin�!0�0� � ��0�� (28)

���0� � �
��0�

a0 sin i0
sin��0� (29)

�i�
��0�

a0
cos��0� (30)

Terms involving ���0�=a0�
2 have been neglected in the derivation of

the preceding equations. Except for the case of equatorial reference
orbits, Eqs. (26–30) do not contain singularities. It is reiterated that
the analysis presented in this paper is valid for nonequatorial
reference orbits. For circular orbits,!0�0� can be selected arbitrarily.

Notice the presence of an eccentricity-induced bias term in the
right-hand side of Eq. (26), rendering the relative orbit slightly off
center in the along-track direction. This result matches with the
corresponding initial condition expression derived in [11], for first-
order eccentricity expansions. Equations (27) and (28) can be used to
calculate e1 and �M�0�, enabling the computation of �e. It can be
seen that for circular reference orbits, �e� ��0�=2a0 and
tan�M�0� � � cot�!0�0� � ��0��. Hence, for circular orbits, unlike
�M�0�,�e is independent of!0�0� and ��0�. Finally,���0� can be
determined from Eqs. (26) and (29). The required change in the
semimajor axis is obtained from the rate-matching constraint [29]:

�a

a0
��

J2

2

�

Re

a0

�

2 3�0 � 4

�40

�

�1 � 3cos2i0�
e0�e

�20
��i sin 2i0

�

(31)

where �0 �
�����������������

�1 � e20�
p

.
The condition given by Eq. (31) is one of several others that can be

used to minimize drift between two satellites. Numerical approaches
can also be used to determine initial conditions to minimize drift in
both along-track as well as cross-track directions. Breger [36] has
presented a method based on convex linear optimization and Yan
et al. [37] have adopted the method of differential corrections. Both
of the aforementioned methods can handle more general
perturbations other than J2. The previous equations provide mean
classical differential orbit element initial conditions for PCO.
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Matching In-Plane and Cross-Track
Fundamental Frequencies

As mentioned earlier, a mismatch between the in-plane and cross-
track frequencies causes precession of the relative orbit. A condition
for matching the two frequencies is derived in this section. It can be

seen from Eq. (23), and the result nxy � _M1, that the difference
between the in-plane and cross-track frequencies over a short time
interval (compared with the period of the differential nodal
precession rate) is

nz � nxy � _!1 �
� _��i sin i0

�i2 � ����0� sin i0�
2

(32)

The drift rates for the argument of perigee and nodal difference,
respectively, can be written as

_! 0 ��k

�

2 �
5

2
sin2i0

�

(33)

and

� _���k sin i0�i (34)

where

k��1:5J2

�

Re

a0

�

2

n0 (35)

Neglecting the effect of � _! in Eq. (32), the frequency mismatch is
estimated as follows:

nz � nxy � ksin2i0

�

5

2
�

�i2

�i2 � ����0� sin i0�
2

�

� 2k (36)

For the special case of the PCO, substitution of Eqs. (29) and (30)
into Eq. (36) leads to the following result:

i�0 � sin�1
�

�������������������������������

2

2:5� cos2��0�

s

�

(37)

Thus, the frequency-matching condition is satisfied by two possible
values of the chief’s orbit inclination for any ��0�. The inclinations
for ��0� � 0 are i�0 � 49:11 and 130.89 deg, and those for ��0� �
90 deg are the critical inclination values: i�0 � 63:43 and 116.57 deg.
The numerical results presented in [32] agree very closely with the
special inclination values determined here.

Figure 1 shows 15 relative motion orbits for a 7100 km circular
reference orbit with ��0� � 0 and i0 � 49:11 deg. Figure 2 shows
the same for a polar orbit, with��0� � 0. The effect of the frequency-
matching condition is obvious from the two figures. The mismatch in
the in-plane and cross-track frequencies results in the precession of
the PCO shown in Fig. 2. If allowed to continue in this manner
indefinitely, without control, the PCO of Fig. 1 will also distort due to
the effect of differential nodal precession.

It can be shown by substituting Eq. (34) into Eq. (22) and using
Eqs. (29) and (30) that, for a PCO formation, the natural rate of
change of the cross-track phase angle, for each satellite with a
different initial phase angle, is given by

_ � ksin2i0cos
2��0� (38)

Considering an infinite number of satellites (formation), the average
rate of change of the phase angle can be obtained as shown next:

_ av �
1

2
ksin2i0 (39)

Note that, under the assumptions in this paper, _ is not a function of
the size of the relative orbit.

Amplitude Considerations

Attention in the preceding section was focused on the derivation of
a frequency-matching condition in terms of i0 and ��0�. It is equally
important to study the effect of these parameters on the cross-track
amplitude growth-rate. In-plane amplitude variation is negligible, as
long as Eq. (31) is satisfied.

Equation (19) can be expressed directly in terms of i0 and ��0� via
Eqs. (29), (30), and (34). The result obtained is

�z � �
����������������������������������������������������������������������������������������

1� k2t2sin4i0cos
2��0� � ktsin2i0 sin 2��0�

p

(40)

Equation (40) shows that for nonequatorial orbits, cross-track
amplitude growth rate is zero for the special case:��0� � 90, 270 deg
or equivalently, for �i� 0. Another special case of zero linear
growth is obtained, corresponding to ��0� � 0, 180 deg, by
neglecting the t2 term in Eq. (40). This assumption is reasonable for a
time period of one day. Taken together, Eqs. (37–40) explain the
existence of the so-called magic inclinations¶ or frozen relative
orbits.∗∗

Relative orbits for other values of i0, set up with the corresponding
values of ��0�, given by Eq. (37), are shown in Fig. 3 for a period of
one day. The orbits in these figures do not precess, but show
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Fig. 1 Relative orbits for i0 � 49:11deg.
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Fig. 2 Relative orbits for i0 � 90deg.

¶Data available at http://www.esa.int/gsp/ACT/newsroom/NewsArchive/
New17_Sep14_MagicInclinations.htm

∗∗Suggested by Ronald J. Proulx, Charles Stark Draper Laboratory, Inc.
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localized, cross-track growth for inclinations corresponding to
��0� ≠ 0, 90 deg. Note that the inclination chosen for the bottom-
right figure (of Fig. 3) is not exactly the critical value, due to a
singularity present in the mean-to-osculating element transforma-
tion [38].

Control Strategy and Thrust Acceleration Estimates
Based on Modified HCW Equations

It is assumed in this section that the PCO initial conditions have
been set up using Eqs. (26–31). The linearized relative motion of a
deputy, when the chief is moving in a circular orbit, can be described
by the HCW equations:

�x � 2n0 _y � 3n20x� uxJ2 � uxc (41)

�y� 2n0 _x� uyJ2 � uyc (42)

�z� n20z� uzJ2 � uzc (43)

where n0 is the unperturbed two-body mean motion of the chief. The
acceleration components in the right-hand side of the preceding
equations can be separated into two parts: one due to J2 and the other
due to the action of thrust. The J2-induced acceleration for PCO
initial conditions can be estimated by substituting the perturbed
motion variable expressions from Eqs. (11–13) in Eqs. (41–43). The
deputy satellite’s secular drift rates of mean anomaly and perigee are
approximated by the respective drift rates of the chief. This
approximation is consistent with the O�J2� approximation of the
disturbing accelerations. The results for the J2-induced acceleration
components are

uxJ2 � 3� _M2
0 � n

2
0�x� 2� _M0 � n0� _y � 3n20�a (44)

uyJ2 ��2� _M0 � n0� _x (45)

uzJ2 � �n20 �
_M2
0 � 2n0 _!0�z� 2��0�kn0sin

2i0 cos��0� sin�0

(46)

A set of modified HCW equations are obtained by substituting
Eqs. (44–46) into Eqs. (41–43):

�x � 2 _M0 _y � 3 _M2
0x� uxc � 3n20�a (47)

�y� 2 _M0 _x� uyc (48)

�z� _M2
0z� 2n0 _!0z� 2��0�kn0sin

2i0 cos��0� sin�0 � uzc (49)

It has been shown in [12,13] that a small, control-induced phase
rotation rate _� is required for intersatellite fuel balancing. Hence, the
reference motion variables are selected as

x�t� � 0:5��0� sin��0�0� � ��0� � � _M0 � _��t� ��a (50)

y�t� � ��0� cos��0�0� � ��0� � � _M0 � _��t� (51)

z�t� � ��0� sin��0�0� � ��0� � � _M0 � _��t� (52)

Note that the forms of Eqs. (51) and (52) do not match their respective
initial values given by Eqs. (24) and (25), but the differences are
negligible. It should also be noted that the reference motion
representation chosen in this paper differs from those given in
[12,13], because the perigee drift rate is not included in Eqs. (50–52).
Furthermore, the differences between the natural motion variables,
as given by Eqs. (14), (15), and (18) and those given by Eqs. (50–52),
show that the chosen reference motion is not the natural motion,
exactly. Hence, there is a need for feedback control in addition to the
feedforward.

The following results for the control accelerations are obtained by
substituting the previous reference variables into Eqs. (47–49):

uxc � ��0�n0 _� sin��0�0� � ��0� � � _M0 � _��t� (53)

uyc ����0�n0 _� cos��0�0� � ��0� � � _M0 � _��t� (54)

uzc � 2n0� _!0 � _����0� sin��0�0� � ��0� � � _M0 � _��t�

� 2��0�kn0sin
2i0 cos���0�� sin�0 (55)

Equations (53) and (54) indicate that the magnitudes of the in-plane
thrust acceleration components for formation rotation depend
linearly on _�. Further insight on the dependence of the cross-track
control acceleration magnitude on _� is obtained by squaring Eq. (55)
and averaging the result over an orbit of the chief to eliminate the
short-periodic variations. The mean square cross-track control
acceleration is given as

u2zc � 2�2�0�n20f� _!0 � _�� ksin2i0�
2cos2���0��

� � _!0 � _��2sin2��0�g (56)

The minimum value of u2zc is obtained for

_�� _!0 � ksin2i0cos
2�0 � _!0 � _ (57)

This is not a surprising result, considering Eq. (38), which provides
the expression for the natural cross-track phase angle rotation rate.
For an orbit with inclination as given by Eq. (37), the optimal control-

induced phase rotation rate is zero, because _!0 �� _ . Thus, there is
no need for the application of control for such a satellite, at least over
a period of one day.

Formation Maintenance Without Radial Thrust

Before proceeding to model validation and simulation results, an
important special case of control without the use of radial thrust is
examined. It can be shown by using the in-plane motion variables
and the modified HCW equations given by Eqs. (47) and (48) that, in
addition to the savings resulting from not using radial thrust, there is
also a reduction in the along-track control acceleration by 50%.

Successive differentiations of the in-plane equations and
imposition of the zero-radial thrust constraint result in the following
differential equation:

y
::::
� _M2

0 �y� �uyc � 3 _M2
0uyc (58)
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In the absence of radial thrust, x�t� does not follow the reference
solution of Eq. (50), exactly. Substitution of Eq. (51) into Eq. (58)
results in the following:

uxc � 0 (59)

uyc ��0:5n0��0� _� cos��0�0� � ��0� � � _M0 � _��t� (60)

x�t� � 0:5

�

1�
0:5 _�

n0

�

��0� sin��0�0� � ��0� � � _M0 � _��t� � xbias

(61)

where xbias is a constant, to be defined later. A comparison of
Eqs. (59) and (60) with Eqs. (53) and (54) shows the level of
reduction in the net in-plane thrust acceleration achieved by not using
radial thrust and relaxing the tracking requirement for the radial
component of motion. The difference between the expressions in
Eqs. (50) and (61) isO�J2�.

Radial Bias Component

The previous developments made use of the mean elements
extensively. One can define and compute mean motion variables by
using the differential mean elements instead of the differential
osculating elements. However, because the averages of the short-
periodic terms do not necessarily equal to zero, errors ofO�J2� can
result in some of the relative motion variables due to a direct
substitution of the mean elements. Sengupta et al. [34] have obtained
corrections to the mean motion variables, resulting in the so-called
averaged expressions for the relative motion variables. This
analytical filtering process removes the short-periodic oscillations
from a function f of the osculating element vectorœ via the following
transformation:

fav�œ� � f� �œ� �
1

2�

Z

2�

0

fsp� �œ� dM (62)

where fav is the average of f, �œ indicates the mean element vector,
and fsp denotes the short-periodic variations of f. Details of
obtaining the required fsp expressions and the results for the filtered
relative motion variables for eccentric orbits are presented in detail in
[34]. Of significance to the present work is the correction to the radial
bias expression obtained in [34] for circular orbits:

xbias ��a�
9

4
J2

�

Re

a0

�

2

a0 sin�2i0��i (63)

Substitutions of the expression for �a given by Eq. (31) and that for
�i from Eq. (30) into the preceding equation, result in

xbias ��
5

4
J2��0�

�

Re

a0

�

2

sin�2i0� cos��0� (64)

The expression for xbias can be substituted in Eq. (61); it is essential
for achieving additional fuel savings.

Fuel Minimization and Balancing

Balancing the rate of fuel consumption among identical satellites
in a formation results in a common ballistic coefficient for all the
satellites. This is important, because differential drag has not been
accounted for. Assuming that radial thrust is not used, the mean
square control acceleration, averaged over an orbit, can be evaluated
as shown next:

J�
n0

2�

Z

2�=n0

0

�u2yc � u2zc � dt (65)

The performance index defined here is amenable to a simple
analysis but, in general, it does not accurately represent the fuel

requirement. However, J is directly proportional to the fuel
consumption for power-limited, low-thrust propulsion.

The following expression for J is obtained by substituting
Eqs. (55) and (60) into Eq. (65) and evaluating the integral:

J� ��n0�
2

�

1

8
_�2 � 2� _� � _!0�

2 � 2k2sin4i0cos
2�0

� 4� _� � _!0�ksin
2i0cos

2�0

�

(66)

The averaged cost per satellite, considering an infinite number of
satellites, over one orbit of the chief, can be represented as

Jformation �
n0

4�2

Z

2�=n0

0

Z

2�

0

�u2yc � u2zc � d��0� dt (67)

Evaluation of the preceding integral results in the following:

Jformation � ��n0�
2

�

1

8
_�2 � 2� _� � _!0�

2 � k2sin4i0

� 2� _� � _!0�ksin
2i0

�

(68)

Minimization of the preceding expression with respect to _� yields

_� optformation
�

16

17

�

_!0 �
1

2
ksin2i0

�

�
16

17
� _!0 � _ av� (69)

For each deputy in the formation, the optimal phase rotation rate, as a
function of its initial phase angle, is given by

_� optsatellite
�

16

17
� _!0 � ksin2i0cos

2�0� �
16

17
� _!0 � _ � (70)

Equations (57) and (70) are closely related. Whereas the result of
Eq. (57) is obtained by minimizing the out-of-plane thrust
acceleration only, the result of Eq. (70) minimizes the total cost.
Hence, the optimal value of _� is dictated predominantly by the out-
of-plane dynamics. These results are valid only for the quadratic
performance index in Eq. (65). The optimal rate of phase shift for a
formation is independent of the radius of the relative orbit and is
O�J2n0�.

Figure 4 shows the variation of _� for a formation, as well as two
individual satellites, one with ��0� � 0 and the other with
��0� � 90 deg. There exist multiple i0 and ��0� pairs satisfying
Eq. (37) for which _�� 0 is optimal. For a formation, the required _� is
zero if i0 is equal to 54.73 deg or its supplement, the values for which
the perturbed mean motion is equal to the two-body mean motion.

For such a formation, _!0 is equal and opposite of _ av.
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The costs for individual satellites, as well as the average
formation-maintenance cost can also be minimized with respect to
inclination. Simultaneous minimization of J, given by Eq. (66) with
respect to i0 and ��0�, results in the following:

i��0 � sin�1
�

����������������������������������������������������������������

20� 8cos2��0�

88cos2��0� � 64cos4��0� � 25

s

�

(71)

As can be seen from Eq. (71), for a satellite with ��0� � 0,
i��0 � i�0 � 49:11 deg. Similarly, the critical inclination value is
optimal for a satellite with ��0� � 90 deg. The value of i��0 for a
formation can be obtained from Eqs. (68) and (69) or, directly, by
substituting in Eq. (71), cos2��0� � 0:5. The result is
i��0 � 42:3 deg.

Control acceleration for formation keeping, with respect to the
reference trajectory chosen, is required to mitigate two effects:
1) frequency mismatch and 2) cross-track amplitude variation. The
i0–��0� constraint given by Eq. (37) automatically accounts for the
first effect, but not the second. Equations (37) and (71) are
simultaneously satisfied for i0 � 49:11 deg and the critical
inclination.

Linear Quadratic Regulator Control
Using Averaging Filter

The steady-state, continuous-time, LQR control method based on
the standard HCW model is used for formation maintenance,
resulting in a constant-gain, tracking control law. In this work, the
feedback controls are augmented with the feedforward controls
given by Eqs. (55) and (60):

�

uy

uz

�

�

�

uyc
uzc

�

�K

�

x � xr
_x � _xr

�

(72)

whereK is the LQR gain matrix and x� � x y z �>. The reference
position vector xr is obtained from Eqs. (51), (52), and (61).

Beginning with a set of mean classical elements for the chief, the
initial mean elements can be setup for a deputy satellite with the
selection of � and ��0� via Eqs. (26–31) for the differential mean
classical elements. It is best to use the method of Gim and Alfriend
[39] for the mean-to-osculating transformation for near-circular
orbits. This procedure has been developed for nonsingular as well as
equinoctial elements. The osculating orbital elements can be
converted into inertial position and velocity vectors to obtain the
initial conditions for a numerical integration process. The relative
position and velocity states are obtained from the inertial states of the
satellites by using the transformations presented in [40]. Next, the
relative state is filtered [34] to remove the short-periodic oscillations
and then feedback via the control law given by Eq. (72).

Simulation Results

Simulations were carried out by using the inertial coordinate
representations of the nonlinear equations of motion of the individual
satellites. A formation of seven satellites was set up in a 1 km, PCO
configuration with initial phase angles ranging from 0 to 90 deg. The
chief was assumed to be in a circular orbit with mean a� 7100 km
and 1500 orbits (equivalent to �100 days) were propagated. The
control weights were chosen to be diagonal: �1; 1�=n40, the state
weight matrix was selected with unit weights for the position
coordinates, and the rate error weight for each axis was n�20 .

Figure 5 shows the individual satellite cost functions for
i0 � 49:11 deg, obtained by evaluating Eq. (65) for each deputy and
extrapolating the value over a period of 1 year. The variations of the
cost are shown for two cases, with and without fuel balancing. Each
line in this figure represents a single satellite. The fuel-balanced cost
curves are close to each other and have a smaller average slope
compared with the unbalanced cost curves. Hence, the average rate
of fuel consumption with _�� 0 is higher than that with
_�opt � 1:84 deg =day, the corresponding optimal rate. As can be
seen from the figure, the use of the optimal rotation rate reduces the

formation-maintenance cost and simultaneously balances the
intersatellite fuel requirements to a great extent. The fuel curves
for _�� 0 do coincide periodically, but their short-term variations are
appreciable. The total formation-maintenance cost with fuel
balancing, evaluated from the simulation results, is 8:49�
10�5 m2=s3=year compared to a cost of 1:59 � 10�4 m2=s3=year,
obtained by holding � constant for each satellite.

Figure 6 shows that natural fuel balancing takes place for a
formation with i0 � 54:73 deg without a control-induced formation
rotation. The total formation-maintenance cost for this case is
1:08 � 10�4 m2=s3=year. This value of the inclination is ideal for
fuel balancing, but not for the best fuel economy, because the average
rate of fuel consumption is higher for this case as compared with that
for i0 � 49:11 deg.

As shown in Fig. 7, the formation-maintenance cost for i0 �
42:3 deg is 7:58 � 10�5 m2=s3=year, slightly better than that for
i0 � 49:11 deg. Figure 8 shows a cost comparison with and without
fuel balancing for i0 � 70 deg. The fuel-balanced cost curves are
very close to each other and can be easily distinguished from their
counterparts. The optimal rotation rate for this case is
_�opt ��4:1827 deg =day. The total cost with fuel balancing is
2:12 � 10�4 m2=s3=year compared with 5:56 � 10�4 m2=s3=year,
without.

The preceding results also point out that longer-term
extrapolations of fuel requirements for individual satellites, based
on short-term simulations, can be erroneous, especially when the
individual costs are not well balanced. However, it is reasonable to
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extrapolate the total fuel consumption for a formation, over extended
periods of time, because the process of cost averaging virtually
eliminates the periodic effects. As can be seen from Figs. 5–8, cost
curves for the individual satellites show significant periodic
behavior, superimposed over the mean variation, for _�� 0. The
periodic components of the cost curves are negligible compared with
their respective linear-growth terms when the fuel consumption is
well balanced.

Figures 9 and 10 show the plots of the along-track and cross-track
components of the total and feedforward controls for a deputy with
��0� � 0 and for i0 � 70 deg over 15 orbits. The fundamental
frequencies of the feedback and feedforward controls for each axis
are equal to each other. There is a long-period variation in the cross-
track control, appearing as a secular component in Fig. 10. Twice-
per-orbit components in the total controls are also present for both the
axes, as can be ascertained from Fig. 11, which shows the differences
between the two acceleration components for each axis. A small bias
component is also visible in the cross-track acceleration error. These
effects are caused by the differential eccentricity of the orbit of the
deputy, a higher-order effect neglected in the preceding analysis.

Conclusions

This paper has developed expressions for the fundamental
frequencies of J2-perturbed relative motion of satellites in near-
circular orbits. Special inclination-phase-angle combinations have
been obtained, for which the in-plane and out-of-plane fundamental
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frequencies are equal, over an extended period of time. The resulting
relative orbits do not precess and, under further restrictions, do not
distort in the presence of differential nodal precession. These results
validate and generalize previously reported numerical findings in
[32]. Special values of the orbit inclination have been identified for
minimizing control requirements for individual satellites as well as
for a formation. Accurate estimates of the control requirements for
formation maintenance and intersatellite fuel balancing have also
been presented. The advantage of not using the radial component of
thrust has been clearly demonstrated, especially for circular reference
orbits. Higher-order terms can be retained in the approximations, as
well as the reference trajectories, to improve the results of this paper.
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