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Abstract

The well-known Hill-Clohessy-Wiltshire equations that are used for the design of forma-

tion flight relative orbits are based on a circular reference orbit. Classical solutions such as

the projected circular or general circular relative orbit are no longer valid in the presence of

eccentricity. This paper studies the effects of eccentricity on relative motion for Keplerian

orbits. A new linear condition for bounded motion in relative position coordinates is derived,

that is valid for arbitrary eccentricities and epoch of the reference orbit. It is shown that

the solutions to the Tschauner-Hempel equations that are used for rendezvous in elliptic

orbits are directly related to the description of relative motion using small orbital element

differences. A meaningful geometric parameterization for relative motion near a Keplerian

elliptic orbit of arbitrary eccentricity is also developed. The eccentricity-induced effects are

studied and exploited to obtain desired shapes of the relative orbit. Equations relating these

parameters to initial conditions, and differential classical and nonsingular elements are also

derived. This parameterization is very useful for the analysis of more complicated models,

such as the nonlinear relative motion problem.

Introduction

The study of relative motion between satellites in Keplerian elliptic orbits has been of

recent interest from the point of view of designing clusters of spacecraft flying in formation

around a planet. Such formations find use in terrestrial observation, communication, and

stellar interferometry. Of more recent interest, is the potential of use of such formations in

orbits that are highly eccentric. Examples of such missions have been presented by Carpenter
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et al.[1], that include reference low Earth orbit and highly elliptical orbit missions. The

Magnetosphere Multiscale Mission [2] is another example, where the apogee and perigee are

of the order of 12-30R⊕ and 1.2R⊕, respectively (with R⊕ denoting the radius of the Earth),

yielding eccentricities of the order of 0.8 and higher.

Traditional formation design relies on the study of the Hill-Clohessy-Wiltshire (HCW)

equations[3, 4]. This model assumes a circular reference orbit and a linearized differential

gravity field based on the two-body problem. Conditions for bounded motion, known as

HCW initial conditions, are easily derived for this model and they have found wide ap-

plicability for formation flight. The violation of the underlying assumptions of the HCW

model leads to deviation from the motion predicted. A large body of literature exists that

deals with the violation of the assumptions, either individually, or in various combinations.

The effects of nonlinearity in the differential gravity field, have been studied by the use of

perturbation techniques, as shown in Refs. [5, 6, 7, 8]. The effects of eccentricity of the

reference orbit on the formation have also been studied extensively. Anthony and Sasaki[9]

obtained approximate solutions to the HCW equations by including quadratic nonlinearities

and first-order eccentricity effects. Second-order eccentricity effects were also accounted for,

in Refs. [10, 11], by Hamiltonian modeling of the HCW equations. Vaddi et al.[12] studied

the combined problem of eccentricity and nonlinearity and obtain periodicity conditions in

the presence of these effects. However, these conditions lose validity even for intermediate

eccentricities, primarily because of the higher-order coupling between eccentricity and non-

linearity. Inalhan et al.[13] obtained a boundedness condition for the linear problem with

arbitrary eccentricities, by providing an explicit equation relating the initial conditions at

perigee. For all other cases of epoch, the initial conditions can be obtained by matrix oper-

ations. Sengupta et al.[14] obtained expressions for periodic relative motion by accounting

for quadratic nonlinearities, valid for arbitrary eccentricities. Gurfil[15] posed the bounded-

motion problem in terms of an energy-matching condition and presented an algorithm for

optimal single-impulse formation-keeping. The boundedness condition in Ref. [15] is pre-

sented as the solution to a sixth-order polynomial equation in one variable, and is valid for

general two-body motion.

State transition matrices that reflect the effect of eccentricity, have also been derived,

and are presented in Refs. [16, 17, 18, 19]. Reference [16] used a series expansion for radial

distance and true anomaly, in terms of time. However, for moderate eccentricities, the

convergence of such series requires the inclusion of higher-order terms. Other state transition

matrices are obtained from the Tschauner-Hempel equations[20], and use the true anomaly

f as the independent variable, and are therefore implicit in time.

Relative motion can also be characterized by analytically propagating the orbital elements
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corresponding to each satellite[21, 22]. In Ref. [21], this is performed in a time-explicit

manner, by using a Fourier-Bessel expansion of the true anomaly in terms of the mean

anomaly. However, it is shown that for eccentricities of 0.7, terms up to the tenth order in

eccentricity are required in the series. In Ref. [22], a methodology has been proposed where

Kepler’s equation[23] is solved for the Deputy, but is not required for the Chief, if the Chief’s

true anomaly is used as the independent variable.

Due to the nonlinear mapping between local frame Cartesian coordinates and orbital

elements, errors in the Cartesian frame are translated into very small errors in the orbital

angles. Thus, linear equations relating relative position and velocity to small orbital element

differences have also been obtained, by either obtaining the partials of the former with

respect to the latter[24], or by linearizing the direction cosine matrix of the reference frame

rotating with the Deputy, with respect to that of the Chief[25]. The linear relationship

between relative motion in the rotating frame, and differential orbital elements, allows the

characterization of small orbital element differences in terms of the constants of the HCW

solutions, viz. relative orbit size and phase. This feature has been used by Refs. [25, 26] to

design formations in near-circular orbits. The basic zero-secular drift condition is satisfied

by setting the semi-major axis of the Deputy and Chief to be the same. The characterization

of relative orbit geometry is achieved by relating the rest of the orbital element differences

to its shape, size, and the initial phase angle.

Even though relative motion near an arbitrary Keplerian elliptic orbit is well-represented

in the literature, the characterization of formations in such orbits has still not been addressed

completely. Schaub[27] related the differential orbital elements to the constants of the HCW

solution for near-circular references orbits. Lane and Axelrad[28] expressed relative motion

near elliptic orbits, in terms of integration constants and differential orbital elements. Zanon

and Campbell[29] discussed the effects of the constants of integration in the solution to

the Tschauner-Hempel equations, on the relative motion equations. The last two works

are useful for mission design near arbitrarily eccentric orbits; however, some key issues still

require exploration, for example, how the choice of the constants or orbit eccentricity affect

the relative orbit shape and size.

This paper presents a meaningful parameterization for formation geometry, near elliptic

orbits of arbitrarily eccentricity, in terms of parameters which are analogous to the special

case of the HCW constants. These parameters are directly related to orbit shape and size,

unlike previous works, in the sense that they provide useful and direct insight into the

relative orbit geometry, for arbitrarily eccentric orbits. These parameters are derived using

the Tschauner-Hempel (TH) model as a basis. This model is useful in deriving a simple

linear relationship between the initial conditions that lead to bounded motion, for arbitrary
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eccentricity and epoch. By simple manipulation, the unity between the TH model and the

geometric method as proposed by Alfriend et al.[25] is revealed, and the linear relationships

between the new parameterization, constants of integration of the TH model, and differential

orbital elements, are developed. Furthermore, by the use of Fourier-Bessel expansions using

the true and mean anomalies as independent variables, the effects of eccentricity on formation

geometry are characterized. The use of the new parameterization intuitively reveals these

effects, and schemes for formation design are suggested that accomodate eccentricity effects.

Both, true anomaly, as well as time, are treated as the independent variable in this approach.

General Solution to TH Relative Motion Equations

Consider an Earth-centered inertial (ECI) frame, denoted by N , with orthonormal basis

BN = {ix iy iz}. The vectors ix and iy lie in the equatorial plane, with ix coinciding

with the line of the equinoxes, and iz passes through the North Pole. The analysis uses

a Local-Vertical-Local-Horizontal (LVLH) frame, as shown in Fig. 1 and denoted by L,

that is attached to the target satellite (also called Leader or Chief). This frame has basis

BL = {ir iθ ih}, with ir lying along the radius vector from the Earth’s center to the

satellite, ih coinciding with the normal to the plane defined by the position and velocity

vectors of the satellite, and iθ = ih × ir. The TH equations[20] use the true anomaly

of the Chief, f as the independent variable, instead of time, t. Let the position of the

Deputy in the Chief’s LVLH frame be denoted by % = uir + viθ + wih, where u, v and

w denote the components of the position vector along the radial, along-track, and out-of-

plane directions, respectively. The position is normalized with respect to the radius of the

Chief, r = p/(1 + e cos f), where p = aη2 is the semiparameter, a is the semimajor axis,

η =
√

(1− e2), and e is the eccentricity. The normalized position vector is given as follows:

ρ = xir + yiθ + zih = (1 + e cos f)
%

p
(1a)

ρ′ = (1 + e cos f)
%′

p
− e sin f

%

p
(1b)

ρ′′ = (1 + e cos f)
%′′

p
− 2e sin f

%′

p
− e cos f

%

p
(1c)

where x, y, and z are the components of the normalized relative position, and (′) and (′′)

denote derivatives with respect to f . The relative motion equations using the normalized

position and velocity (TH equations) are:

x′′ − 2y′ − 3x

(1 + e cos f)
= 0 (2a)

y′′ + 2x′ = 0 (2b)
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z′′ + z = 0 (2c)

Equations (2) have the following general solution[30, 31]:

x(f) =
d1

e
cos f (1 + e cos f) + d2 sin f (1 + e cos f) + d3 sin f (1 + e cos f)I(f) (3a)

y(f) = −d1

e
sin f (2 + e cos f) +

d2

e
(1 + e cos f)2 +

d3

e

[
(1 + e cos θ)2I(f) + cot f

]
+ d4(3b)

z(f) = d5 cos f + d6 sin f (3c)

where

I(f) =

∫ f

f0

1

sin2 f (1 + e cos f)2
df (4)

As shown in Ref. [31], Eq. (4) is easily evaluated in terms of the eccentric anomaly, E, which

is related to the true anomaly by the following equation:

tan
f

2
=

√
1 + e

1− e
tan

E

2
(5)

However, I(f) has a singularity for f = nπ, which can be removed, as shown by Carter[32],

by integrating Eq. (4) by parts:

I(f) = 2e

∫ f

f0

cos f

(1 + e cos f)3
df − cot f

(1 + e cos f)2
+ cJ = 2e J(f)− cot f

(1 + e cos f)2
+ cJ(6)

where cJ is an arbitrary constant. Carter[33] has shown that the state transition matrix

formulated utilizing J(f) also has singularities when e = 0, which can be removed if J(f)

too, is integrated by parts. Yamanaka and Ankersen[19] have shown that J(f) may also be

conveniently rewritten in terms of Kepler’s equation[23], to be uniformly valid for 0 ≤ e < 1.

As will be shown later, this step also demonstrates the unity between the TH solutions and

the differential orbital element approach[25], by revealing a linear relationship between the

constants of integration of the former approach, and differential orbital elements of the latter

approach. The integral J(f) is rewritten as:

J(f) = − 3e

2η5
K(f) +

1

2η2

sin f (2 + e cos f)

(1 + e cos f)2
(7)

where, K(f) =

∫ f

f0

η3

(1 + e cos f)2
df = (E − e sinE)− (E0 − e sinE0) = n∆t (8)
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where n =
√

(µ/a3) is the mean motion of the reference orbit, and ∆t is the elapsed time

since epoch. The constants are rearranged for convenience in the following fashion: c1 =

d1/e − d3/η
2, c2 = d2 + d3cJ , c3 = ed3, c4 = d2/e + d3cJ/e + d4, and c5,6 = d5,6. Then, the

solutions to the TH equations are:

x(f) = c1 cos f (1 + e cos f) + c2 sin f (1 + e cos f)

+
2c3
η2

[
1− 3e

2η3
sin f (1 + e cos f)K(f)

]
(9a)

y(f) = −c1 sin f (2 + e cos f) + c2 cos f (2 + e cos f)− 3c3
η5

(1 + e cos f)2K(f) + c4 (9b)

z(f) = c5 cos f + c6 sin f (9c)

The relative velocity components are as follows:

x′(f) = −c1(sin f + e sin 2f) + c2(cos f + e cos 2f)

−3ec3
η2

[
sin f

(1 + e cos f)
+

1

η3
(cos f + e cos 2f)K(f)

]
(10a)

y′(f) = −c1(2 cos f + e cos 2f)− c2(2 sin f + e sin 2f)

−3c3
η2

[
1− e

η3
(2 sin f + e sin 2f)K(f)

]
(10b)

z′(f) = −c5 sin f + c6 cos f (10c)

The constants of integration can be evaluated in terms of the initial conditions, and are

related to the pseudoinitial values used in Ref. [19]. Let the initial conditions be denoted by

x0 = {x0 y0 z0 x
′
0 y

′
0 z

′
0}>, specified at arbitrary initial true anomaly f0, and let the vector of

integration constants be denoted by c = {c1 · · · c6}>. Then, x0 = L(f0)c where the (i, j)th

entry of L is the term with cj as a coefficient, in the expression for the ith component of

the state vector. It can be shown that detL = 1, and if M denotes the inverse of L, then

M = adjointL. It follows that c = M(f0)x0, where:

c1 = − 3

η2
(e+ cos f0)x0 −

1

η2
sin f0 (1 + e cos f0)x

′
0

− 1

η2
(2 cos f0 + e+ e cos2 f0)y

′
0 (11a)

c2 = − 3

η2

sin f0(1 + e cos f0 + e2)

(1 + e cos f0)
x0 +

1

η2
(cos f0 − 2e+ e cos2 f0)x

′
0
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− 1

η2
sin f0(2 + e cos f0)y

′
0 (11b)

c3 = (2 + 3e cos f0 + e2)x0 + e sin f0 (1 + e cos f0)x
′
0 + (1 + e cos f0)

2 y′0 (11c)

c4 = − 1

η2
(2 + e cos f0)

[
3e sin f0

(1 + e cos f0)
x0 + (1− e cos f0)x

′
0 + e sin f0y

′
0

]
+ y0 (11d)

c5 = cos f0 z0 − sin f0 z
′
0 (11e)

c6 = sin f0 z0 + cos f0 z
′
0 (11f)

Since x(f) = L(f)c = L(f)M(f0)x0, the state transition matrix[19] for this system is

Φ(f, f0) = L(f)M(f0).

Mapping Between States and Differential Orbital Elements

In the geometric description for relative motion, the position in the LVLH frame is written

in terms of differential orbital elements by linearizing the direction cosine matrix that orients

the Deputy LVLH frame with respect to the Chief LVLH frame. Alfriend et al.[25] have shown

that:

u = δr (12a)

v = r(δθ + δΩ cos i) (12b)

w = r(δi sin θ − δΩ sin i cos θ) (12c)

where δœ denotes a small change in the orbital element œ. Dividing by r to get the corre-

sponding normalized states,

x = δr/r (13a)

y = δθ + δΩ cos i (13b)

z = δi sin θ − δΩ sin i cos θ (13c)

Following the development in Ref. [27], it can be shown that:

δr

r
=

e

η3
sin f(1 + e cos f)δM0 −

1

η2
cos f(1 + e cos f)δe

+

[
1− 3e

2η3
sin f (1 + e cos f)n∆t

]
δa

a
(14)

wherein the fact that the mean anomaly difference, δM is the sum of its initial value, δM0,

and the difference in mean motion propagated over the elapsed time since epoch, has been
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used:

δM = δM0 + δn∆t = δM0 −
3

2
n∆t

δa

a
(15)

Since from Eq. (8), n∆t = K(f), a direct correspondence between Eq. (14) and Eq. (9a) is

observed:

δa =
2a

η2
c3 (16)

δM0 =
η3

e
c2 (17)

δe = −η2c1 (18)

Comparing the expression for z from Eqs. (13) with Eq. (9c), the following are obtained:

δi sinω − δΩ sin i cosω = c5 (19a)

δi cosω + δΩ sin i sinω = c6 (19b)

Consequently,

δi = sinω c5 + cosω c6 = sin θ0 z0 + cos θ0 z
′
0 (20)

δΩ sin i = − cosω c5 + sinω c6 = −(cos θ0 z0 − sin θ0 z
′
0) (21)

where θ0 = ω+ f0. Finally, comparing the expression for y from Eqs. (13) with Eq. (9b), the

following result is obtained:

δω = c4 −
δM0

η3
− δΩ cos i (22)

Thus, the orbital element differences (to the first order) can be obtained by substituting c1...6

in the above equations. Let δœ = {δa δe δi δΩ δω δM0}> denote the vector of differential

orbital elements. Let œC denote the orbital elements of the Chief. Then the equations

relating differential orbital elements to the constants of integration as shown above, may

be summarized by δœ = N(œC)c, where the matrix N has as its entries, the coefficients

of the integration constants comprising the differential orbital elements. Consequently, the

relation δœ = N(œC)M(f0)x0 yields the differential orbital elements in terms of the initial

conditions. It can be shown that detN = 2η3a/(e sin i) and detM = 1; this means the

mapping from relative Cartesian coordinates to differential orbital elements is singular when

the reference orbit is circular or equatorial (e = 0 or i = 0, respectively). In particular, if e

8 of 33



J
G
ui
d
Co

nt
ro
l D

yn
am

is a small number (or zero), then calculations for δM0 and δω from Eq. (17) and Eq. (22),

respectively, yield large numbers (or are undefined) due to e appearing in the denominator.

However, their sum is a small number, consistent with assumption of small orbital element

differences. This problem may be solved by using nonsingular orbital elements[23]. The

solutions to the TH equations, and the development of differential nonsingular orbital ele-

ments in terms of the initial conditions are presented in the appendix. The singularity due

to e = 0 also ceases to be a problem if the parameterization developed in this paper, is used.

However, for the following sections, results are shown using the classical orbital element set

since they are more concisely expressed in terms of these elements.

Drift due to Mismatched Semimajor Axes

If δa (and consequently, c3) is not zero, then from Eqs. (9) it is evident that x and y will

grow in an unbounded fashion, due to the presence of K(f), which is an increasing function.

After one orbit of the Chief, the drift in x and y directions are thus:

xdrift = x(f0 + 2π)− x(f0) = −6πc3
η5

e sin f0 (1 + e cos f0) (23a)

ydrift = y(f0 + 2π)− y(f0) = −6πc3
η5

(1 + e cos f0)
2 (23b)

The drift in unscaled coordinates, in terms of differential semimajor axis, can be calculated

to yield the following:

udrift = −3π

η
e sin f0 δa (24a)

vdrift = −3π

η
(1 + e cos f0) δa (24b)

Thus the total drift in position per orbit, denoted by %drift/orbit is:

%drift/orbit =
(
u2

drift + v2
drift

)1/2
=

3π

η
δa (1 + e2 + 2e cos f0)

1/2 (25)

This drift is maximum at f0 = 0, and minimum at f0 = π, and is bounded as shown below:

3π δa

√
1− e

1 + e
≤ %drift/orbit ≤ 3π δa

√
1 + e

1− e
(26)

The maximum and minimum value of the drift were also obtained by Carpenter and Al-

friend[34] by evaluating the relative drift and apoapsis and periapsis only.
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Periodic Orbits

Periodic solutions may be obtained by choosing initial conditions such that c3 = 0, since

the rest of the terms in the solution are sinusoids, and therefore, periodic. Consequently,

Eq. (11c) results in the following relation for bounded relative motion:

(2 + 3e cos f0 + e2)x0 + e sin f0 (1 + e cos f0)x
′
0 + (1 + e cos f0)

2 y′0 = 0 (27)

In unscaled coordinates, this is transformed into the following linear condition for bounded

relative motion, for arbitrary eccentricity and epoch:

(2 + e cos f0) (1 + e cos f0)
2

(
u

p

)
+ e sin f0

(
u̇

√
p

µ

)
−e sin f0 (1 + e cos f0)

2

(
v

p

)
+ (1 + e cos f0)

(
v̇

√
p

µ

)
= 0 (28)

In the above equation, the symbol (˙) is used to signify a derivative with respect to time;

consequently, u̇ and v̇ are radial and along-track components of the dimensional velocities

in the rotating frame of the Chief.

Equation (27) is satisfied for an infinite combination of initial conditions, except when

f0 = 0 or f0 = π. Furthermore, when e = 0, this reduces to the well-known Hill’s condition

for periodicity. Without loss of generality, one may choose:

y′0 = −(2 + 3e cos f0 + e2)

(1 + e cos f0)2
x0 −

e sin f0

(1 + e cos f0)
x′0 (29)

With c3 = 0, the expressions for the trajectory are considerably simplified. Upon substituting

Eq. (29) in Eqs. (11), the constants may be rewritten in terms of dimensional position and

velocity with f as the independent variable,

c1 =
(cos f0 + e cos 2f0)

(1 + e cos f0)2
x0 −

sin f0

(1 + e cos f0)
x′0 =

u0

p
cos f0 −

u′0
p

sin f0 (30a)

c2 =
(sin f0 + e sin 2f0)

(1 + e cos f0)2
x0 +

cos f0

(1 + e cos f0)
x′0 =

u0

p
sin f0 +

u′0
p

cos f0 (30b)

c4 = y0 −
(2 + e cos f0)

(1 + e cos f0)

(
e sin f0

1 + e cos f0

x0 + x′0

)
=
v0

p
(1 + e cos f0)−

u′0
p

(2 + e cos f0) (30c)

c5 = z0 cos f0 − z′0 sin f0 =
w0

p
(cos f0 + e)− w′0

p
sin f0(1 + e cos f0) (30d)

c6 = z0 sin f0 + z′0 cos f0 =
w0

p
sin f0 +

w′0
p

cos f0(1 + e cos f0) (30e)

10 of 33



J
G
ui
d
Co

nt
ro
l D

yn
am

A concise representation of the most general solution for periodic motion near a Keplerian

elliptic orbit with linearized differential gravity, denoted by the subscript ‘℘’, is given by:

x℘(f) =
%1

p
sin(f + α0) (1 + e cos f) (31a)

y℘(f) =
%1

p
cos(f + α0) (2 + e cos f) +

%2

p
(31b)

z℘(f) =
%3

p
sin(f + β0) (31c)

where the new relative orbit parameters, %1...3, α0, and β0, are obtained from Eqs. (30), and

are given by:

%1 =
(
u2

0 + u′20
)1/2

=
a

η

(
η2δe2 + e2δM2

0

)1/2
(32a)

%2 = v0(1 + e cos f0)− u′0(2 + e cos f0) = p

(
δω + δΩ cos i+

1

η3
δM0

)
(32b)

%3 =
[
(1 + 2e cos f0 + e2)w2

0 + (1 + e cos f0)
2w′20 − 2e sin f (1 + e cos f)w0w

′
0

]1/2

= p
(
δi2 + δΩ2 sin2 i

)1/2
(32c)

α0 = tan−1

(
u0

u′0

)
− f0 = tan−1

(
−η
e

δe

δM0

)
(32d)

β0 = tan−1

(
(1 + e cos f0)w0

(1 + e cos f0)w′0 − e sin f0w0

)
− f0 = tan−1

(
−δΩ sin i

δi

)
+ ω (32e)

The constants c1...6 may be expressed using the design parameters, as shown:

c1 =
%1

p
sinα0, c2 =

%1

p
cosα0, c4 =

%2

p
, c5 =

%3

p
sin β0, c6 =

%3

p
cos β0 (33)

Obviously, the most general form of periodic solutions to the HCW equations are a special

case of Eqs. (31).

Two advantages of using the new parameterization have been mentioned earlier, viz.

their uniform validity for all eccentricities, and the fact that %1 and %3 are obviously size

parameters, %2 is a bias parameter, and α0 and β0 are phase angle parameters. Therefore, the

effects of the changing one or more of these parameters is intuitively clear. Furthermore, the

concise nature of this parameterization proves very useful for the study of more complicated

models of relative motion, as shown by Sengupta et al.[14].

The differential orbital elements may also be rewritten in terms of the parameter set.

These relations are useful, for example, if Gauss’ variational equations are used to initiate a

numerical procedure for formation establishment or reconfiguration. Such an approach was

used by Vaddi et al.[35], to establish and reconfigure formations near circular orbits, using
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impulsive thrust. Upon substituting Eq. (33) into Eqs. (16)-(22), and setting c3 = 0, results

in the following:

δa = 0 (34a)

δe = −η2c1 = −%1

a
sinα0 (34b)

δi = sinω c5 + cosω c6 =
%3

p
cos(β0 − ω) (34c)

δΩ =
1

sin i
(− cosω c5 + sinω c6) = −%3

p

sin(β0 − ω)

sin i
(34d)

δM0 =
η3

e
c2 =

%1

a

η

e
cosα0 (34e)

δω =
%2

p
− δM0

η3
− δΩ cos i (34f)

Corresponding expressions for nonsingular orbital elements are presented in the appendix.

Eccentricity-Induced Effects on Orbit Geometry

The most general form of periodic motion in the setting of the HCW equations is given

by the following equations (wherein subscript ‘h’ denotes HCW solutions):

uh = k1 sin(τ + ϕ0) (35a)

vh = 2k1 cos(τ + ϕ0) + k2 (35b)

wh = k3 sin(τ + ψ0) (35c)

where τ = nt is the normalized time or mean anomaly, though in the case of the HCW

equations, this is equivalent to true anomaly since eccentricity is assumed zero. The actual

relative orbit has a trajectory in the local frame whose components are given by the following

expressions:

u℘ = rx℘ = %1 sin(f + α0) (36a)

v℘ = ry℘ = 2%1 cos(f + α0)
(1 + (e/2) cos f)

(1 + e cos f)
+

%2

(1 + e cos f)
(36b)

w℘ = rz℘ = %3
sin(f + β0)

(1 + e cos f)
(36c)

Eccentricity effects may be studied by expanding v℘ and w℘ as Fourier series. In this sec-

tion, the effects of eccentricity are analyzed by using both true anomaly, and time as the

independent variable.
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True Anomaly as the Independent Variable

The Cauchy residue theorem is now used to obtain the coefficients of cos kf and sin kf

to form Fourier series for v℘ and w℘. This is similar to the approach used in Ref. [23] to

obtain a series expansion of eccentric anomaly in terms of mean anomaly. It can be shown

that:

cos f
(2 + e cos f)

(1 + e cos f)
= −ε

η
+

(2 + η + η2)

η(1 + η)
cos f +

2

η(1 + η)

∞∑
k=2

(−ε)k−1 cos kf (37a)

sin f
(2 + e cos f)

(1 + e cos f)
=

(3 + η)

(1 + η)
sin f +

2

(1 + η)

∞∑
k=2

(−ε)k−1 sin kf (37b)

1

(1 + e cos f)
=

1

η
+

2

η

∞∑
k=1

(−ε)k cos kf (37c)

where ε =
√

[(1− η)/(1 + η)] = O(e). Consequently,

v℘(f) =

[
−ε
η
%1 cosα0 +

1

η
%2

]
(38a)

+

[
(2 + η + η2)

η(1 + η)
%1 cosα0 − 2

ε

η
%2

]
cos f − (3 + η)

(1 + η)
%1 sinα0 sin f

+
2

η(1 + η)

∞∑
k=2

(−ε)k−1
[
{%1 cosα0 − ε(1 + η)%2} cos kf − η%1 sinα0 sin kf

]
w℘(f) = −ε

η
%3 sin β0 +

2

η(1 + η)
%3 (η cos β0 sin f + sin β0 cos f) (38b)

+
2

η(1 + η)
%3

∞∑
k=2

(−ε)k−1 (η cos β0 sin kf + sin β0 cos kf)

It is observed that both the v and w components of motion have constant terms, a primary

harmonic, associated with relative orbit size parameters, and higher-order harmonics. Thus

the five effects of eccentricity are immediately recognized. The first effect is obviously the

presence of higher-order harmonics, whose amplitudes successively decrease by a factor of ε.

For non-zero eccentricities, this causes deviation from the well-known circular shape of the

HCW solutions.

The second effect is that of amplitude scaling, as may be observed by the presence

of terms dependent on η in the amplitudes of the primary harmonics in both v and w.

Consequently, as eccentricity increases, for the same choice of %1...3, the orbit tends to shrink

in the along-track direction and expand in the out-of-plane direction.

The third effect of eccentricity is the introduction of a phase shift. This is readily observed
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by recasting Eq. (38b) as:

w℘(f) = −ε
η
%3 sin β0 +

2

η(1 + η)

(
sin2 β0 + η2 cos2 β0

)1/2
%3 sin

(
f + β̃0

)
(39)

+
2

η(1 + η)

(
sin2 β0 + η2 cos2 β0

)1/2
%3

∞∑
k=2

(−ε)k−1 sin
(
kf + β̃0

)
where

β̃0 = tan−1

(
1

η
tan β0

)
= β0 +

e2

4
sin 2β0 +

e4

8

(
sin 2β0 +

1

4
sin 4β0

)
+O(e6) (40)

Furthermore, the phase angle of the Deputy also affects its amplitude.

A fourth effect renders the formation off-center, due to the presence of constant terms in

the v℘ and w℘ components of motion. The bias depends on the phase angles α0 and β0 of

the Deputy. While the bias in w℘ cannot be controlled since %3 is specified by relative orbit

design requirements, the bias in v℘ can be removed by an appropriate choice of %2.

The appearance of higher-order harmonics in v℘ and w℘, but not in u℘, causes the fifth

effect - that of skewness of the relative orbit plane. When formations require the phase

angles in the along-track and out-of-plane to be equal, the radial motion is in-phase with the

along-track, and consequently, out-of-plane motion. Consequently, a plot of the out-of-plane

motion vs. the radial motion would result in a straight line. However, due to eccentricity

effects, higher-order harmonics appear in w℘, but not in u℘. The relative orbit is therefore

no longer planar. This will be demonstrated in the context of Projected Circular Orbit

solutions.

The bias and skewness of the relative orbit are well-known, as reported by Refs. [16,

29]. The bias, and the other three effects, can be corrected to some extent by appropriate

initial conditions. However, it is necessary to analyze these effects with time, which is the

independent variable enforced by physics.

Time as the Independent Variable

If the normalized time τ is chosen as the independent variable, then the relative motion

expressions are qualitatively the same, i.e., they exhibit the same properties as in the previous

section. However, in the quantitative sense, the equations are different. In this section use

is made of the following relations[23]:

cos kM =
∞∑

n=−∞

Jn(−ke) cos(n+ k)E (41a)
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sin kM =
∞∑

n=−∞

Jn(−ke) sin(n+ k)E (41b)

where Jn are Bessel functions of the first kind of order n, and

Jn(ν) =
∞∑
l=0

(−1)l

22l+n l! (n+ l)!
ν2l+n (42)

It can then be shown that:

v℘(τ) = (a0%1 cosα0 + c0%2) +
∞∑

k=1

[
(ak%1 cosα0 + ck%2) cos kτ − bk sinα0 sin kτ

]
(43a)

w℘(τ) = p0%3 sin β0 + %3

∞∑
k=1

(pk sin β0 cos kτ + qk cos β0 sin kτ) (43b)

where,

a0 = − e

2η2
(3 + 2η2), ak = −(1− kη4)

kη2
Jk+1(ke) +

(1 + kη4)

kη2
Jk−1(ke) (44a)

bk =
2

η

Jk(ke)

ke
− η [Jk+1(ke)− Jk−1(ke)] (44b)

c0 =
3− η2

2η2
, ck =

e

kη2
[Jk+1(ke)− Jk−1(ke)] (44c)

p0 = − 3e

2η2
, pk = − 1

kη2
[Jk+1(ke)− Jk−1(ke)] (44d)

qk =
2

η

Jk(ke)

ke
(44e)

Even though bk and qk have e in the denominator, the computation of these expressions do

not cause problems as e→ 0, because of the following expansion:

Jk(ke)

ke
=

∞∑
l=0

(−1)l

22l+k l! (k + l)!
(ke)2l+k−1, k ≥ 1 (45)

The expansion of u℘ in terms of harmonics of the mean anomaly is straightforward since

the equations relating cos f and sin f to cos kM and sin kM are provided in Battin[23]:

u℘(τ) = %1 sinα0 cos f + %1 cosα0 sin f

= −e%1 sinα0 +
2η2

e
%1 sinα0

∞∑
k=1

Jk(ke) cos kM
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−η%1 cosα0

∞∑
k=1

[Jk+1(ke)− Jk−1(ke)] sin kM (46)

Consequently, using a numerical procedure, table lookup, or truncation of the series to the

desired order of eccentricity, Eqs. (43a), (43b), and (46) provide time-explicit expressions for

bounded relative motion, which can perform as excellent reference trajectories for formation-

keeping.

Correcting for Bias

The problem of bias correction is now studied in detail, for the two choices of the inde-

pendent variable. Since the bias in w℘ cannot be controlled, only the bias in v℘ is examined.

An examination of Eq. (38a) suggests the following choice of %2, to correct for bias:

%2 = ε%1 cosα0 (47)

Equation (43a) suggests the following condition:

%2 = [e(3 + 2η2)/(3− η2)]%1 cosα0 (48)

However, the bias corrections suggested by Eq. (47), and Eq. (48) have different interpreta-

tions. Equation (47) does not offer meaningful physical interpretation, in the sense that it

is the average of a quantity of a variable that is a nonlinear function of time. In this sense,

Equation (48) is physically more significant, since this correction will imply that the Deputy

spends equal amounts of time on either side of the Chief in the along-track direction. It

is obvious that both biases converge to zero as the Chief’s orbit eccentricity decreases, but

have vastly different intepretations for high eccentricities.

This point is illustrated by Fig. 2, for a Chief’s eccentricity of 0.6. Let %1 = 1/2, %3 = 1

and α0 = β0 = 0. For a circular reference orbit, these correspond to the HCW initial

conditions for a projected circular orbit. If %2 = ε%1 cosα0, then the variation of v℘ with

respect to τ is shown by the dashed line. It is therefore not immediately apparent that this

implies the Deputy is on either side of the Chief in the along track direction, for equal portions

of the true anomaly. Moreover, the motion is not symmetric with respect to the ih vector

since |v℘(−α0)/%1| < 2%1 and |v℘(π − α0)/%1| > 2%1. If %2 = [e(3 + 2η2)/(3 − η2)]%1 cosα0,

then, the variation of v℘ is depicted by the dotted line. This shows values that are greater

than 2%1 for regions near the Chief’s perigee, and less than 2%1 for regions near the Chief’s

apogee. However, the time-averaged value is zero. Thus if the mission requires the Deputy

to be near the Chief in the along track direction for large periods of time, this bias correction

is suitable.
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It is also possible to have initial conditions such that |v℘(−α0)| = |v℘(π − α0)|. With

this correction, it is also noted that motion in the along-track direction is bounded between

±2%1. It is easily shown that the correction corresponding to this condition is given by:

%2 = e%1 cosα0 (49)

Direct substitution of this condition in Eq. (36), results in v℘(−α0) = 2%1 and v℘(π − α0) =

−2%1. The use of this correction results in the solid line in Fig. 2.

Other versions of bias correction exist in the literature. Vaddi et al.[12] and Melton[16]

employ a correction that is valid for low eccentricities. Inalhan et al.[13] describe a process for

obtaining initial relative velocity for symmetric motion, by posing the problem as a linear

program. However, any of the corrections derived in this section, are valid for arbitrary

eccentricity. For example, using Eqs. (32) and Eq. (49), results in the following:

v0 − 2u′0 =
e sin f0

(1 + e cos f0)
u0 (50)

Corrections to HCW Initial Conditions

It is of interest to study the deviation induced from the classical HCW solutions due to

eccentricity. The different cases are analyzed individually.

Leader-Follower Formation Modified by an Eccentric Reference Orbit

In the Leader-Follower Formation, the Deputy is at a fixed distance from the Chief,

along the reference orbit. In the classical HCW environment, this is obtained by setting

k1 = k3 = 0, and k2 = d in Eqs. (35), where d is the desired separation of the Deputy

from the Chief. However, if %1 = %3 = 0 and %2 = d in Eqs. (36), then the Deputy-Chief

separation varies from d/(1+e) to d/(1−e), with a time-averaged value of c0d. Consequently,

the correct choice for %2 should be %2 = d/c0 = 2η2d/(3 − η2). Irrespective of whether or

not the distance is corrected for, care must be taken that a value of %2 is chosen to ensure

that the minimum separation meets design requirements, because as eccentricity increases,

the minimum separation decreases.

Projected Circular Orbit Modified by an Eccentric Reference Orbit

Projected Circular Orbits (PCO) are obtained in the HCW equations by setting 2k1 =

k3 = %, and ψ0 = ϕ0 in Eqs. (35). Consequently, v2
h + w2

h = %2. However, PCOs can never

be obtained near an eccentric reference, as is evident from Eqs. (36). It is possible, however,

to choose initial conditions such that the relative orbit is as circular as possible, at least to

the first harmonic. Assuming that %2 = e%1 cosα0 is chosen as the zero-bias condition, then
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%1 = %/2 is sufficient to ensure that maximum and minimum values of v℘(τ) are consistent

with HCW conditions. However, the new phase angle for the first harmonic of v℘(τ) is now

α̃0, where:

tan α̃0 =
b1

a1 + e
tanα0 (51)

For consistency, it is desired that the first harmonic of w℘(τ) also have the same phase angle

as v℘(τ), so that to the first harmonic, a corrected-PCO is obtained. The phase angle of the

first harmonic of w℘(τ) is denoted by β̃0, where:

tan β̃0 =
p1

q1
tan β0 (52)

Consequently,

tan β0 =
q1
p1

tan β̃0 =
q1
p1

tan α̃0 =
q1b1

p1(a1 + e)
tanα0 (53)

Finally, though out-of-plane bias cannot be controlled, its amplitude can be corrected so

that the time average of w℘(τ) is equal to %. Consequently,

%3 =
%(

p2
1 sin2 β0 + q2

1 cos2 β0

)1/2
(54)

It is also possible to ensure that maximum w℘(τ) does not exceed %. From Eqs. (36), the

extrema of w℘(f) occur when cos(f+β0)+e cos β0 = 0, or when f = −β0±cos−1(−e cos β0).

Of these, the negative sign corresponds to minimum w℘(f) and positive sign to maximum

w℘(f). Thus if

%3 =
(
−e sin β0 +

√
1− e2 cos2 β0

)
% (55)

then the maximum deviation in the out-of-plane motion will be bounded by ±%. An issue

with this approach is that by placing bounds on the maximum out-of-plane motion, its

minimum is also naturally reduced, which may bring the Deputy very close to the Chief.

Figure 3 shows examples of a formation initiated with the corrected and uncorrected

initial conditions, for a reference orbit with e = 0.2 and e = 0.7, with α0 = 0◦. In these

figures, the ideal PCO is shown as a dashed-dotted line. If the Eqs. (35) are used to generate

initial conditions for a PCO, then these will result in unbounded motion since Eq. (29)

is not satisfied. However, if Eqs. (35) are used to generate initial conditions for all the

states excluding v′0, and Eq. (29) is used to generate an initial condition for v′0, the result
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will be a relative orbit that is bounded, but without a circular projection. The extent of

this deviation is depicted by dashed line. The solid line depicts the result of applying the

amplitude correction developed in this section, and the bias correction from Eq. (49). In

both cases, bias in the out-of-plane direction is absent, but as shown in Fig. 3(b), bias in

along-track direction is significant. The corrections developed in this paper successfully keep

along-track motion bounded to the desired value of 1 km. It should also be observed that for

high eccentricities, as shown in in Fig. 3(b), projected motion resembles a triangle; this may

be exploited for mission design. The bias in the y direction, which is a function of cosα0,

and consequently is maximum when α0 = 0◦, is removed entirely, as is shown in Fig. 3(a).

Fig. 4 shows the effects of eccentricity, if α0 = 90◦. In this case, bias in the along-

track direction is absent, but out-of-plane bias, which is a function of β0, is maximum.

While there is no significant difference upon application of the corrections in Fig. 4(a),

the amplitude correction is evident in Fig. 4(b). As eccentricity increases, the Deputy’s

maximum displacement out of the plane increases to several kilometers. The amplitude

correction limits this excursion.

The effect of eccentricity on the three-dimensional character of the relative orbit is shown

in Fig. 5. This figure corresponds to initial conditions consistent with Fig. 3, for three values

of eccentricity. The solid line shows the out-of-plane vs. radial motion for a circular reference,

which will be a straight line, since the phase angles have been chosen to be equal. However,

the dashed line, and the dashed-dotted line, which correspond to e = 0.3 and e = 0.8,

respectively, show that the effect of higher-order harmonics causes increasing deviation from

the relative orbit plane.

General Circular Orbit Modified by an Eccentric Reference Orbit

The General Circular Orbit (GCO) is obtained in the HCW sense by requiring that

u2
h + v2

h + w2
h = %2. Consequently, k1 = %/2, k3 =

√
3%/2, k2 = 0, and ψ0 = ϕ0. These

conditions lead to a relative orbit that is circular on a plane (local in the rotating frame).

For an eccentric reference, the initial conditions need to be modified, since using the HCW

initial conditions do not lead to GCOs. The modifications derived in this section only account

for the first harmonic in the Fourier-Bessel expansions of Eq. (36).

Upon choosing %3 = (
√

3/2) %/
√

(p2
1 sin2 β0 + q2

1 cos2 β0), it is evident that w2
℘(τ) =

(3/4) %2 sin2(f+ β̃0). Thus, %1 = %/2 remains a valid choice to obtain a GCO-like relative or-

bit. The phase angles are chosen in the same fashion as those for the PCO. Figures 6(a) and

6(b) show near-GCO formations for a reference orbit with e = 0.2, for α0 = 0◦ (maximum

y-bias), and α0 = 90◦ (maximum z-bias), respectively. The legend in the figures is consistent

with the previous section, as is the choice of boundedness condition. Furthermore, similar
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to the previous section, the corrections are able to eliminate bias in the y direction, but not

in the z direction.

Conclusions

This paper studies the effects of eccentricity on the shape and size of relative orbits.

Parameters based upon the relative orbit shape and phase angle are developed. It is shown

that these parameters are more meaningful than existing works, to study the effects of eccen-

tricity. The key effects are identified as those that lead to amplitude and phase changes, and

introduction of bias. Corrective schemes are proposed that exploit the effects of eccentricity,

and in some cases, these lead to relative orbits very close or similar to those predicted by

the HCW equations. Since the effects of eccentricity are studied both in a qualitative and

quantitative fashion, these results can serve as excellent models for future mission design.

Furthermore, the approach in this paper yields results that are valid for all values of or-

bit eccentricity. The approach in this paper unifies the solutions to the Tschauner-Hempel

equations, and the relative motion description using differential orbital elements. By using

nonsingular elements, the results are shown to be uniformly valid even when the Chief’s

orbit is circular. The transformation between the relative orbit parameters and differential

orbital elements can be used to design impulsive or continuous maneuvers for the estab-

lishment of such formations, at low cost, since they include the full effects of eccentricity.

The parameterization is also useful for more complicated analysis for formation flight, for

example, nonlinear formation flight.

Appendix

The nonsingular orbital element set comprises the elements {a i Ω q1 q2 λ0}> where

q1 = e cosω, q2 = e sinω, and λ0 = ω + M0 (similarly, F = ω + E, and θ = ω + f), is the

mean (similarly, eccentric, and true) argument of latitude. A solution to the TH equations

using θ as the independent variable is easily obtained, by observing that Eqs. (9) may be

rewritten as:

x(θ) = (c̃1 cos θ + c̃2 sin θ)α(θ) +
2c3
η2

[
1− 3

2η3
β(θ)α(θ)K(θ)

]
(56a)

y(θ) = (−c̃1 sin θ + c̃2 cos θ) [1 + α(θ)]− 3c3
η5

α2(θ)K(θ) + c4 (56b)

z(θ) = c5 cos θ + c6 sin θ (56c)

where,

α(θ) = 1 + q1 cos θ + q2 sin θ = 1 + e cos f (57a)
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β(θ) = q1 sin θ − q2 cos θ = e sin f (57b)

The arbitrary constants c̃1 and c̃2 are evaluated as follows:

c̃1 = c1 cosω − c2 sinω

= − 3

η2α(θ0)

[
q1(1 + cos2 θ0) + q2 sin θ0 cos θ0 + (2− η2) cos θ0

]
x0

− 1

η2

[
q1 sin θ0 cos θ0 − q2(1 + cos2 θ0) + sin θ0

]
x′0

− 1

η2

[
q1(1 + cos2 θ0) + q2 sin θ0 cos θ0 + 2 cos θ0

]
y′0 (58a)

c̃2 = c1 sinω + c2 cosω

= − 3

η2α(θ0)

[
q1 sin θ0 cos θ0 + q2(1 + sin2 θ0) + (2− η2) sin θ0

]
x0

− 1

η2

[
q1(1 + sin2 θ0)− q2 sin θ0 cos θ0 − cos θ0

]
x′0

− 1

η2

[
q1 sin θ0 cos θ0 + q2(1 + sin2 θ0) + 2 sin θ0

]
y′0 (58b)

The constants c5 and c6 are already nonsingular, and c4 is rewritten as:

c4 = − 1

η2
[1 + α(θ0)]

[
3β(θ0)

α(θ0)
x0 + (2− α(θ0))x

′
0 + β(θ0)y

′
0

]
+ y0 (59)

Furthermore, K(θ) is Kepler’s equation rewritten in nonsingular variables:

K(θ) = (F − q1 sinF + q2 cosF )− (F0 − q1 sinF0 + q2 cosF0) = λ− λ0 (60)

The differential nonsingular orbital elements, δq1, δq2, and δλ0 can be written in terms

of the initial conditions as shown:

δq1 = cosω δe− e sinω δω

= (3q1 + 3 cos θ0)x0 − q2y0 − q2 cot i cos θ0 z0 + sin θ0(1 + q1 cos θ0 + q2 sin θ0)x
′
0

+ {q1 + cos θ0(2 + q1 cos θ0 + q2 sin θ0)} y′0 + q2 cot i sin θ0 z
′
0 (61a)

δq2 = sinω δe+ e cosω δω

= (3q2 + 3 cos θ0)x0 + q1y0 + q1 cot i cos θ0 z0 − cos θ0(1 + q1 cos θ0 + q2 sin θ0)x
′
0

+ {q2 + sin θ0(2 + q1 cos θ0 + q2 sin θ0)} y′0 − q1 cot i sin θ0 z
′
0 (61b)

δλ0 = δω + δM0

= cot i (cos θ0 z0 − sin θ0 z
′
0) +

1

1 + η
(2− η − η2 + q1 cos θ0 + q2 sin θ0)x0 + y0
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− 1

1 + η

{
2η + 2η2 + (q1 cos θ0 + q2 sin θ0)(1 + q1 cos θ0 + q2 sin θ0)

}
x′0

+
1

1 + η
(q1 sin θ0 − q2 cos θ0)(2 + q1 cos θ0 + q2 sin θ0)y0 (61c)

Equations (61) are free from singularities when e = 0, but are more complicated than the

corresponding expressions for the classical orbital elements.

The most general form for periodic relative motion is also modified, since f cannot be

uniquely determined. Therefore, Eqs. (31) are rewritten as:

x℘(f) =
%1

p
sin(θ + α̃0) (1 + q1 cos θ + q2 sin θ) (62a)

y℘(f) =
%1

p
cos(θ + α̃0) (2 + q1 cos θ + q2 sin θ) +

%2

p
(62b)

z℘(f) =
%3

p
sin(θ + β̃0) (62c)

where,

%1 =
(
u2

0 + u′20
)1/2

=
a

η

[(
1− η2

)
δλ2

0 + 2 (q2δq1 − q1δq2) δλ0 − (q1δq1 + q2δq2)
2 + δq2

1 + δq2
2

]1/2
(63a)

%2 = v0(1 + q1 cos θ0 + q2 sin θ0)− u′0(2 + q1 cos θ0 + q2 sin θ0)

= p

[
δΩ cos i+

(1 + η + η2)

η3(1 + η)
(q2δq1 − q1δq2) +

1

η3
δλ0

]
(63b)

%3 =
[
(1 + 2q1 cos θ0 + 2q2 sin θ0 + q2

1 + q2
2)w

2
0 + (1 + q1 cos θ0 + q2 sin θ0)

2w′20

−2 (q1 sin θ − q2 cos θ) (1 + q1 cos θ0 + q2 sin θ0)w0w
′
0]

1/2

= p
(
δi2 + δΩ2 sin2 i

)1/2
(63c)

α̃0 = tan−1

(
u0

u′0

)
− θ0 = tan−1

[
(1 + η) (δq1 + q2δλ0)− q1 (q1δq1 + q2δq2)

(1 + η) (δq2 − q1δλ0)− q2 (q1δq1 + q2δq2)

]
(63d)

β̃0 = tan−1

(
(1 + q1 cos θ0 + q2 sin θ0)w0

(1 + q1 cos θ0 + q2 sin θ0)w′0 − (q1 sin θ0 − q2 cos θ0)w0

)
− θ0

= tan−1

(
−δΩ sin i

δi

)
(63e)

Conversely, the orbital element differences δq1, δq2, and δλ0 may be written in terms of

the design parameters %1...3, α0, and β0, as shown:

δq1 = q1q2
%1

p
cos α̃0 − (1− q2

1)
%1

p
sin α̃0 − q2

(
%2

p
− δΩ cos i

)
(64a)

δq2 = q1q2
%1

p
sin α̃0 − (1− q2

2)
%1

p
cos α̃0 + q1

(
%2

p
− δΩ cos i

)
(64b)
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δλ0 =
%2

p
− δΩ cos i− (1 + η + η2)

(1 + η)

%1

p

[
q1 cos α̃0 − q2 sin α̃0

]
(64c)

It should be noted that though the use of nonsingular orbital elements eliminates problems

with e → 0, they are still not suitable for use when i → 0. For example, cot i appears in

Eqs. (61). Equinoctial elements[36] may be used to avoid this problem.
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Figure 3: Near-PCO Relative Motion with HCW and Corrected Initial Condi-
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Figure 5: Effect of Eccentricity on Relative Orbit Plane
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