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Introduction

Zanon and Campbell1 have recently presented a method of optimal control for spacecraft

formation mission planning and reconfiguration, using Carter’s solution2 to the Tschauner-

Hempel equations3 as a basis. Reference 1 uses a spline function to approximate the forcing

term appearing due to control in the relevant equations. The motivation behind the use of

the spline function in this work is the lack of analytical solutions to certain key integrals.

The purpose of this Comment is to show that the integrals in question can be solved for

analytically.

Analysis

Reference 1 states in the paragraph succeeding Eq. (16) that “a considerable amount of

difficulty arises when attempting to evaluate Q(1) and Q(4) because no closed-form solution

has been found for the integration of ρ−1(θ) K(θ).” The development in the succeeding

sections in Ref. 1 then uses a spline function that approximates this integral, with varying

degrees of accuracy, dependent on the eccentricity of the problem, and number of breakpoints

in the spline function.

For practical applications, the spline function is shown to be a good approximation. This

is shown in Fig. (1) of Ref. 1. The position error is as low as 1 × 10−4 m in some cases,

and 1× 10−1 m with 60 breakpoints and for an eccentricity of 0.95. However, the integral in

question can be solved analytically. Let I(θ) denote this integral:

I(θ) =

∫
1

ρ(θ)
K(θ) dθ (1)
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where,

K(θ) =

∫
sin2 θ

ρ(θ)4
dθ (2)

ρ(θ) = 1 + e cos θ (3)

A change of variable of integration from true anomaly, θ, to eccentric anomaly, E, that was

employed by Carter2 to solve for K(θ), can also be used to solve for I(θ). The following

relations are known:4

cos θ =
cos E − e

1− e cos E
, sin θ =

η sin E

1− e cos E
(4a)

cos E =
cos θ + e

1 + e cos θ
, sin E =

η sin θ

1 + e cos θ
(4b)

where η =
√

(1 − e2). It follows that dθ = η dE/(1 − e cos E). As shown in Ref. 2, the

solution to K(θ) is:

K(θ) =

∫
sin2 θ

ρ(θ)4
dθ = − 1

η5

∫
(1− e cos E)2 sin2 E dE (5)

=
1

2η5

(
E − e

2
sin E − 1

2
sin 2E +

e

6
sin 3E

)
(6)

In the case of the integral I(θ), the following relation is used:

dθ

ρ(θ)
=

dθ

1 + e cos θ
=

1

η
dE (7)

Consequently,

I(θ) =

∫
1

ρ(θ)
K(θ) dθ =

∫
1

η
K

(
2 tan−1

{√
1 + e

1− e
tan

E

2

})
dE (8)

=
1

4η6

(
E2 + e cos E +

1

2
cos 2E − e

9
cos 3E

)
(9)

A similar integral that appears in Eqs. (11) and (14) of Ref. 1, given by ρ(θ)−2 K(θ), can be

solved for using the above steps, by noting that:

dθ

ρ(θ)2
=

1

η3
(1− e cos E) dE (10)

Even though the solution to I(θ) is comprised of terms involving E2, the entire expression
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can be written in terms of K(θ)2, and harmonics of θ. Of these terms, K(θ) needs to be

evaluated once in the entire procedure, and its value can be used to calculate I(θ) as well as

the integral of ρ(θ)−2 K(θ).

Conclusion

Since Q(1) and Q(4) can be solved for analytically, the authors’ approach in Ref. 1 can be

implemented using closed form solutions to these integrals, instead of spline approximations.
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