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Formation Establishment and Reconfiguration
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We analyze spacecraft formation establishment and reconfiguration problems for two-body orbits. The desired

formations are characterized by nonsingular orbital-elemental differences. An analytical, two-impulse solution is

proposed for achieving the desired orbital-elemental differences. Gauss’s variational equations are used to compute

the corresponding impulse magnitudes analytically and the resulting solutions can be easily implemented using

onboard computational resources. It is also shown that the cost obtained from the analytical solution differs by

less than 1% from that obtained by numerical optimization.

Introduction

F ORMATION flying is a new paradigm in space mission design,
aimed at achieving the functionality of a very large satellite

with multiple small satellites. The proposed benefits of formation
flying include flexible mission capabilities, achieved through the
reconfiguration of formations. In this paper, we address the issues
of establishment and reconfiguration of spacecraft formations for
two-body orbits using impulsive control. We focus our attention on
formations that consist of a central chief spacecraft, surrounded by
multiple deputy spacecraft. We also assume that the chief is in a
circular reference orbit.

Shown in Fig. 1 is a schematic of a circular formation that will be
considered in this paper. A four-deputy formation is shown in the
initial(inner) configuration. Impulsive control will be used to estab-
lish a deputy at a desired position in the formation. The formation
reconfiguration problem involves transferring these four deputies to
four uniformly separated slots on the final configuration. Indicated
on the final configuration are two different sets of slots, shown by
empty circles and circles with dots at their centers. Each set consists
of four uniformly separated slots in the final configuration. Though
thefigure showsonly two such sets, it is obvious that there are infinite
possibilities, and it is desired to pick the one with optimal features.
The choice of the set is to be followed by the process of assigning to
each deputy in the initial configuration a unique slot in the chosen
set. A control strategy is also required to transfer the deputy from a
given location on the initial relative orbit to any given location on
the final relative orbit. The fuel consumption for the transfer process
depends on the initial and final positions of the spacecraft.

Typically, impulsive control, applied at proper locations, is pre-
ferred to thrust application for an extended period. Orbital-element
models offer a convenient analytical platform for designing impul-
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sive control laws. Though the circular-orbit analysis can be con-
ducted using Hill’s state transition matrix, the orbital-element ap-
proach is more suitable for accommodating the effects of elliptic
chief orbits and oblate Earth perturbation. Alfriend et al.1,2 used
a geometric approach to characterize the relative orbit in terms of
orbital-element differences. Vadali et al.3,4 used classical orbital
elements to relate the constants of the Hill–Clohessy–Wiltshire pe-
riodic solutions to orbital-element differences. Schaub5 developed
a general method for describing linearized relative motion about a
chief in both circular and elliptic orbits using orbital-element differ-
ences. Gauss’s variational equations can be used to determine the
impulse magnitudes, directions, and application times. Schaub and
Alfriend6 developed impulsive-feedback-control laws for establish-
ing a desired set of mean-element differences. Vadali et al.7 have
also dealt with impulsive orbit-correction schemes in the presence
of J2. The works mentioned do not address the formation estab-
lishment and reconfiguration problems, but form the basis of our
approach in this paper. Ahn and Spencer8 studied the optimal re-
configuration of a formation-flying satellite constellation following
the failure of a constellation member, using permutation analysis.
Tillerson et al.9 present fuel- and time-optimal control algorithms for
formation reconfiguration using numerical linear and integer pro-
gramming techniques, using linearized equations of relative motion
dynamics. Lovell et al.10 developed a guidance algorithm for for-
mation reconfiguration based on the perturbed Clohessy–Wiltshire
equations. Alfriend et al.11 derived the equations for impulsive con-
trol of a satellite formation when the chief is in a low Earth orbit of
small eccentricity with no radial thrusting. Irvin and Jacques12 com-
pared continuous and discrete burn techniques, as well as linear and
nonlinear feedback control techniques for the reconfiguration of
satellite formations. Gurfil13 developed a control-theoretic frame-
work for both analysis and design of low-thrust orbital transfers
using orbital-element feedback by analyzing accessibility and sta-
bilizability properties of Gauss equations. Wiesel14 laid out the the-
oretical foundation for optimal impulse control of relative satellite
motion using a Cartesian coordinate model and solved the resulting
optimization problem numerically.

In this paper, we first relate the desired relative orbit periodic-
solution constants to nonsingular orbital-elemental differences
between the chief and deputy. Next, we develop an analytical two-
impulse control scheme for transferring a deputy from a given loca-
tion in the initial configuration to any given location in the final con-
figuration, using Gauss’s variational equations. An optimal solution
for the pairing of each deputy with a location in the final configura-
tion will be derived using these control schemes. It is seen that this
pairing scheme not only minimizes the overall fuel consumption for
the formation reconfiguration, but also results in homogeneous fuel
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Fig. 1 Schematic diagram of a circular formation.

consumption among all the deputies. In the last section we compare
the fuel consumption resulting from the analytical solution with that
obtained from a numerically optimized solution.

Characterizing the Formations

The Hill–Clohessy–Wiltshire (HCW) equations15 describe the
linearized relative motion of a deputy with respect to a chief in a
circular orbit around the Earth. The HCW equations admit bounded
periodic solutions given by Eqs. (1–3), which are found suitable
for formation flying missions. These solutions, referred to as HCW
solutions, are as follows:

x = (c1/2) sin(θ + α0) (1)

y = c1 cos(θ + α0) + c3 (2)

z = c2 sin(θ + α0) (3)

where x, y, and z are the relative-motion coordinates in the radial,
along-track, and out-of-plane directions defined in a rotating coor-
dinate system attached to the chief, and θ is the argument of latitude
of the chief. The constants c1, c2, c3, and α0 are determined by the
initial conditions:

1) Choosing c1 = c2 = ρ and c3 = 0 results in a relative orbit be-
tween the chief and the deputy that is circular when projected onto
the local horizontal plane; that is, y2 + z2 = ρ2, where ρ is a con-
stant. This formation will be referred to as the projected circular
orbit (PCO).

2) Choosing c1 = ρ, c2 =
√
3/2ρ, and c3 = 0 results in a general

circular orbit (GCO), with x2 + y2 + z2 = ρ2. A nonzero c3 results
in the PCO and GCO formations having a constant offset between
the chief and the center of the formation.

3) Choosing c1 = c2 = 0 and c3 = d , a constant, results in the
leader–follower configuration. In this formation, the deputy con-
stantly leads or trails the chief by a constant distance d in the along-
track (y) direction.

We refer to ρ as the disk size in the rest of the paper. Different
deputies can be initiated into the PCO and GCO formations by
assigning them different values of α0. Together, these satellites can
simulate the baseline of a large circular antenna.

We now relate the constants c1, c2, α0, and c3 to orbital-element
differences using an approach similar to the one adopted inRefs. 3–5
butwith a different choice of orbital elements. The classical set of or-
bital elements given by semimajor axis a, eccentricity e, inclination
i , right ascension �, argument of perigee ω, and mean anomaly M
cannot be used for a circular orbit because the argument of perigee
cannot be uniquely defined. Gauss’s variational equations for ω and
M also have a singularity for e= 0. Therefore, we choose to work
with the nonsingular16 set of orbital elements given as

e = [a, q1, q2, i,�, λ] (4)

q1 = e cosω (5)

q2 = e sinω (6)

λ = ω + M (7)

It iswell known fromorbitalmechanics that bounded relativemotion
between two spacecraft can be obtained only if their periods are
equal. This in turn requires that their semimajor axes be the same
or their difference δa be zero. All of the orbital elements other than
λ are constant for each spacecraft and hence their differences are
also constant. However, with δa= 0, we also have δλ= constant,
which makes it a suitable choice to relate to the periodic solution
constants.

From the geometric description1 of linearized relative motion we
have

y = a(δθ + δ� cos i) (8)

z = a(δi sin θ − δ� cos θ sin i) (9)

These equations describe the relative motion between a spacecraft
in a circular reference orbit with semimajor axis a, inclination i ,
and latitude angle described by θ , and any nearby spacecraft with
orbital-elemental differences given by [δθ δi δ�]. The argument
of latitude θ is defined as

θ = ω + f (10)

⇒ δθ = δω + δ f (11)

The true anomaly f can be approximated as follows for a near-
circular orbit16:

f ≈ M + 2e sinM (12)

⇒ θ ≈ λ + 2q1 sin λ − 2q2 cos λ (13)

Though the eccentricity of the chief is assumed to be zero, we retain
it in the series expansion for f because δe is not necessarily equal
to 0. Therefore, the variation in the latitude for a circular reference
orbit(q1 = q2 = 0) can be written as follows:

δθ ≈ δλ + 2δq1 sin λ − 2δq2 cos λ (14)

Grouping the constant terms and harmonic terms, separately, the
along-track (y) equation can be written as follows:

y = a[δλ + δ� cos i] + sin λ[2aδq1] + cos λ[−2aδq2] (15)

For a circular reference orbit, θ = λ. Therefore, the relation for z
can also be rewritten in terms of orbital-elemental differences as
follows:

z = a(δi sin λ − δ� cos λ sin i) (16)

The desired periodic solution for y and z given by Eqs. (2) and (3)
can be expanded as follows:

y = c3 + c1 cos λ cosα0 − c1 sin λ sinα0 (17)

z = c2 sin λ cosα0 + c2 cos λ sinα0 (18)

In this paper we focus on the PCO and GCO formations; therefore
we set c3 = 0. Comparing coefficients of cos λ and sin λ in Eqs. (17)
and (18) with those in Eqs. (15) and (16), respectively, we obtain
the following set of orbital-elemental differences to generate the
desired HCW periodic solutions:

δa = 0 (19)

δq1 = −
c1 sinα0

2a
(20)

δq2 = −
c1 cosα0

2a
(21)
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δi =
c2 cosα0

a
(22)

δ� = −
c2 sinα0

a sin i
(23)

δλ = −δ� cos i (24)

Impulsive Control

In the preceding section, we prescribed the required set of ele-
mental differences to establish the desired HCW formations. In this
section we employ Gauss’s variational equations16 in establishing
these elemental differences using impulsive thrust. Gauss’ varia-
tional equations in terms of nonsingular elements, for a circular
reference orbit, can be written as follows:

δi ≈ γ cos θ�Vh (25)

δ� ≈ (γ sin θ/sin i)�Vh (26)

δa ≈ (2/n)�Vt (27)

δq1 ≈ γ sin θ�Vr + 2γ cos θ�Vt (28)

δq2 ≈ −γ cos θ�Vr + 2γ sin θ�Vt (29)

δλ ≈ −2γ�Vr − γ sin θ cot i�Vh (30)

where γ =
√
a/µ. �Vr , �Vt , and �Vh are the magnitudes of the

impulse components in the radial, tangential, and out-of-plane di-
rections, respectively. Even though the deputy is in a slightly elliptic
orbit, Gauss’s variational equations for a circular orbit were used
because higher order terms such as the products of the elemental
differences and the products of elemental differences and impulse
magnitudes (assuming small controls) were neglected in the deriva-
tion of these equations.

In this paper, we assume that there are three different thrusters,
one for each direction. The fuel consumption due to a single impulse
is proportional to the one norm of the impulse vector:

FC∝ |�Vr | + |�Vt | + |�Vh | (31)

Formationwide fuel consumption can be related to the summation
of the absolute values of the impulse components over the total
number of impulses and total number of spacecraft in the formation.
It should be noted that the fuel consumption metric for a single-
thruster spacecraft would be proportional to the two-norm of the
impulse vector.

It can be seen from Eqs. (25) and (26) that the inclination and the
node are affected by the out-of-plane thrust alone. In this paper, the
out-of-plane cost refers to the cost of creating the desired inclination
and the desired nodal differences. The in-plane cost refers to the cost
of creating the remaining four elemental differences. It should be
noted that other than λ, the remaining three elemental differences
are affected by the radial and tangential thrust alone. In the following
section, we consider the establishment of the out-of-plane elemental
differences.

Establishment of Out-of-Plane Elemental Differences

The desired inclination difference and the node difference can be
obtained by one impulse, suitably located at the following latitude
angle:

θo = tan−1

�

δ� sin i

δi

�

(32)

This equation has two solutions separated by 180 deg and either of
them can be chosen. The�Vh corresponding to the two θo locations
is given next:

�Vh = ±(1/γ )

�

δi2 + δ�2 sin2 i (33)

Desirable Side Effect

The out-of-plane impulse �Vh given by Eq. (33) also creates a
δλ, given by

δλ = −
r sin θ cos i

h sin i
�Vh = −δ� cos i (34)

The desired δλ for zero bias formation is given by Eq. (24) and is
exactly the same as −δ� cos i . Therefore, the out-of-plane impulse
given by Eq. (33) not only establishes the out-of-plane elemental
differences, but also establishes the desired δλ for the PCO and
GCO formations.

Aside

Theout-of-plane impulse can also be split up into two components
at two locations θo and θo + π :

�Vh1 = ±(p/γ )

�

δi2 + δ�2 sin2 i (35)

�Vh2 = ±[(1 − p)/γ ]
�

δi2 + δ�2 sin2 i (36)

where p ∈ [0 1]. Splitting the out-of-plane into two components
does not change fuel consumption of a three-thruster spacecraft
because |�Vh1 | + |�Vh2 | = |�Vh | for all choices of p. However, the
choice of p can influence the fuel consumption of a single thruster
spacecraft.

Establishment of In-Plane Elemental Differences

In this section, we address the establishment of in-plane elemen-
tal differences using radial and tangential thrusting only. The im-
pulse equations for the in-plane elemental differences are given by
Eqs. (27–30). At least two impulses are required to establish the
four elemental differences. It was observed from numerical experi-
ments that the optimal angular separation between the two impulses
is 180 deg. Therefore, we choose the latitude angles of the impulse
locations to be θ and θ + π . With this assumption, we now analyze
the impulse equations for the in-plane elemental differences. We
first look at the δa equation, which is independent of θ :

δa = (2/n)�Vt1 + (2/n)�Vt2 (37)

The subscripts 1 and 2 refer to the first and second impulses. The
desired δa is equal to 0; therefore the two tangential impulse com-
ponents have to be equal and opposite to each other:

⇒ �Vt1 = −�Vt2 = �Vt (38)

The equations for δq1 and δq2 can similarly be written as follows:

δq1 = γ
�

sin θ�Vr1 + 2 cos θ�Vt1

�

+ γ
�

sin(θ + π)�Vr2 + 2 cos(θ + π)�Vt2

�

= γ
�

sin θ�Vr1 + 4 cos θ�Vt − sin θ�Vr2

�

(39)

δq2 = γ
�

−cos θ�Vr1 + 2 sin θ�Vt1

�

+ γ
�

−cos(θ + π)�Vr2 + 2 sin(θ + π)�Vt2

�

= γ
�

−cos θ�Vr1 + 4 sin θ�Vt + cos θ�Vr2

�

(40)

The equation for δλ is as follows:

δλ = δn1(t2 − t1) − 2γ�Vr1 − 2γ�Vr2 = 0 (41)

Though the task of creating the desired δλ= −cos iδ� has been
achieved by the out-of-plane impulse, another side effect resulting
from the two tangential impulses needs to be corrected, as shown
by Eq. (41). The term δn1(t2 − t1) is the drift that occurs due to the
change in the semimajor axis that is created by the first tangential
impulse. The times t1 and t2 are, respectively, the times of application
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of the first and second impulse. At the end of the second impulse, δa
will be equal to zero and hence δn will also be equal to zero. Once,
δn= 0 is established, δλ remains a constant. δn1 can be related to
the first tangential impulse component as follows:

n =
�

µ/a3 (42)

δn1 = (−3n/2a)δa1 (43)

where δa1 is the semimajor axis difference that is created after the
first impulse, which can be written as

δa1 = (2/n)�Vt1 (44)

The impulse application times t1 and t2, are separated by one half
period, due to the choice of 180 deg spacing between the impulses.
Hence t2 − t1 = Tp/2= π/n, where n is the mean motion and Tp is
the time period of the chief’s orbit. Therefore, the drift due to the
change in semimajor axis resulting form the first impulse can be
written as follows:

δn1(t2 − t1) = (−3π/an)�Vt (45)

Finally, Eq. (41) reduces to the following:

δλ = −2γ�Vr1 − 2γ�Vr2 − (3π/an)�Vt = 0 (46)

�Vr1 , �Vr2 , and �Vt are obtained by solving the three equations
(39), (40), and (46):

�Vt = �Vt1 =
δq1 cos θ + δq2 sin θ

4γ
= −�Vt2 (47)

�Vr1 =
δq1 sin θ − δq2 cos θ

2γ
−

3π

an

δq1 cos θ + δq2 sin θ

16γ 2
(48)

�Vr2 = −
δq1 sin θ − δq2 cos θ

2γ
−

3π

an

δq1 cos θ + δq2 sin θ

16γ 2
(49)

These equations can further be simplified as follows:

�Vt =

�

δq21 + δq22

4γ
sin(θ + ξ) (50)

where ξ is an angle given by ξ = tan−1(δq1/δq2):

�Vr1 = −

�

δq21 + δq22

2γ

�

cos(θ + ξ) +
3π

8anγ
sin(θ + ξ)

�

(51)

This equation can be simplified by recognizing that the term anγ is
equal to 1:

⇒ �Vr1 = −

�

δq21 + δq22

2γ

√
64 + 9π2

8
sin(θ + ξ + ψ) (52)

where ψ is another constant angle given by ψ = tan−1[1/3π/8)].
Similarly, the equations for �Vr2 can also be written as follows:

�Vr2 = −

�

δq21 + δq22

2γ

√
64 + 9π2

8
sin(θ + ξ − ψ) (53)

We now consider optimizing the following function with respect to
θ :

�Vi =
�

��Vr1

�

� +
�

��Vt1

�

� +
�

��Vr2

�

� +
�

��Vt2

�

�

=
�

��Vr1

�

� + 2
�

��Vt
�

� +
�

��Vr2

�

� (54)

The subscript i refers to in-plane cost, in contrast to the out-of-plane
cost obtained in the preceding section. SubstitutingEqs. (50–53) into
the equations, we obtain the following:

�Vi (θ) =

�

δq21 + δq22

2γ

�

| sin(θ + ξ)|

+

�

1 +
9π2

64
{| sin(θ + ξ − ψ)| + | sin(θ + ξ + ψ)|}

�

(55)

This function is nondifferentiable at the following points:

θ = π − ξ, 2π − ξ, π − ξ − ψ, 2π − ξ − ψ

π − ξ + ψ, 2π − ξ + ψ (56)

We now prove that the minimum value of �V (θ) given by Eq. (55)
occurs at one of these nondifferentiable points. The proof is given
below for a more general problem on the same lines.
Lemma: The minimum value of the function

J (θ) =
k

�

j = 1

|A j sin(θ + χ j )|

where A j ’s( > 0) are the constant amplitudes and χ j ’s(∈ [0 2π ])
are the constant phase angles, occurs at a point θ = θi where the
function is not differentiable.
Proof: We adopt a proof by contradiction approach. We prove

that the function cannot have a minimum value at a point θ = θ∗,
where the function J (θ) is differentiable. The function J (θ) is pe-
riodic with a period of 2π ; therefore we focus our attention in the
interval θ ∈ [0 2π ]. J (θ) is also nondifferentiable at the points
θ =π − χ j and θ = 2π − χ j , j ∈ [1, k]. However, the function is
differentiable at all points between any two consecutive nondiffer-
entiable points. Moreover, the function can be written as a single
sinusoidal function J (θ)= A sin(θ + χ) in each of these segments.
The constants A(> 0) and χ can be obtained as functions of A j and
χ j in each segment, differently. For a minimum value to occur at
a point θ = θi that lies in these segments, the following conditions
need to be satisfied:

∂ J (θ)

∂θ

�

�

�

�

θ = θi

= −A cos(θ + χ)|θ = θi = 0 (57)

∂2 J (θ)

∂θ2

�

�

θ = θi
= −A sin(θ + χ)|θ = θi = −AJ (θ)|θ = θi > 0 (58)

The function J (θ) > 0 for all values of θ and the constant A is also
greater than zero which implies −AJ (θ) is always less than zero.
Therefore, Eq. (58) can never be satisfied by the function J (θ);
hence, it cannot have a minimum value at a point θ = θi where
the function is differentiable. Therefore, the minimum value has to
occur at a nondifferentiable point.

Per the preceding lemma, the minimum value of �Vi (θ) given
by Eq. (55) occurs at one of the six values of θ , given by Eq. (56).
The search further reduces to two evaluations due to the following:

�Vi (π − ξ) = �Vi (2π − ξ) =
�

�

δq21 + δq22

��

γ (59)

�Vi (π − ξ − ψ) = �V (2π − ξ − ψ) = �Vi (π − ξ + ψ)

= �V (2π − ξ + ψ) = 1.0859

�

�

δq21 + δq22

��

γ (60)

Therefore, the optimal θ locations for establishment of in-plane ele-
mental differences areπ − ξ, 2π − ξ . It should be noted that they are
separated by 180 deg. Therefore, making either of the two choices
above for the first impulse only results in the second impulse lo-
cation being the other choice. In this paper, we choose 2π − ξ as
the location for the first impulse. It is interesting to note that the
tangential components of the two-impulse solution are identically
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Table 1 Impulse components and locations

for a two-impulse scheme

Component First impulse Second impulse

Location θ = θo θ = θo + π

Radial −

�

δq2
1

+ δq2
2

2γ

�

δq2
1

+ δq2
2

2γ

Tangential 0 0

Out-of-plane

�

δi2 + δ�2 sin2 i

γ
0

equal to zero at θ = 2π − ξ . This can easily be verified by substitut-
ing θ = 2π − ξ into Eq. (50). The absence of tangential thrust also
eliminates the λ drift resulting from the first tangential impulse.
The radial components of the first and second impulses are obtained
by substituting θ = 2π − ξ into Eqs. (48) and (49). The resulting
impulse components are equal and opposite to each other:

�Vr1 = −�Vr2 = −
�

�

δq21 + δq22

��

2γ (61)

Therefore, the optimal in-plane cost is given by the following
equation:

�Vi = |�Vr1 | + |�Vr2 | =
�

�

δq21 + δq22

��

γ (62)

Formation Establishment

The formation establishment problem involves introducing a
deputy into the formationwith the desired element differences given
by Eqs. (19–24) with respect to the chief. The optimal location for
establishing the out-of-plane element differences and δλ is given
by Eq. (32). Substituting δ� and δi from Eqs. (22) and (23) into
Eq. (32), we obtain the following:

θo = tan−1

�

−c2 sinα0

c2 cosα0

�

= 2π − α0 (63)

The location of the first in-plane establishment impulse was found
to be θi = 2π − ξ . The angle ξ = tan−1(δq1/δq2). Substituting
Eqs. (20) and (21) in to this Eq. (63), we obtain the following:

ξ = tan−1

�

c1 sinα0

c1 cosα0

�

= α0 (64)

⇒ θi = 2π − ξ = 2π − α0 = θo (65)

Therefore, the optimal location for establishing the out-of-plane
impulse differences is the same as the optimal location of the first
impulse for establishing the in-plane elemental differences. This
implies that only two impulses are required to establish the elemental
differences corresponding to the HCW formations. The impulse
magnitudes are computed per Table 1. It should be noted that the
total magnitude of the radial components is only half that of the
out-of-plane component.

The following orbital elements of the chief are used in all of
the simulations: a= 7100 km, q1 = q2 = 0, i = 70 deg, �= 10 deg,
and λ = 30 deg. The relative orbits established with the two-impulse
scheme are shown in Figs. 2 (for the α = 60 deg deputy and disk size
ρ = 1 km) and 3 (for the α = 45 deg deputy and disk size ρ = 1 km).
The chief and the deputy are assumed to be coincident initially.
Hence, the relative orbit starts from the origin.

Reconfiguration

In the preceding section, we used the two-impulse scheme for
establishing the projected and general circular relative orbits for
different deputies in a formation. In this section, we will study the
reconfiguration problem, which involves changing the radius of the
circular orbits from ρi to ρ f . The subscripts i and f stand for initial

Fig. 2 Projected circular orbit established with the two-impulse

solution.

Fig. 3 General circular orbit established with the two-impulse

solution.

and final, respectively. The reconfiguration problem involves two
subproblems: 1) the problem of transferring the satellite from a
given location on the initial relative orbit to a given location on the
final relative orbit and 2) the problem of assigning, for each satellite
on the initial relative orbit, the optimal location on the final relative
orbit.

The first problem can be solved by the two-impulse analytical
solution derived in the preceding section. The desired elemental
differences are computed by Eqs. (66–71):

δa = 0 (66)

δq1 = −
c1 f

2a
sinα0 f +

c1i

2a
sinα0i (67)

δq2 = −
c1 f

2a
cosα0 f +

c1i

2a
cosα0i (68)
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Fig. 4 Transferring the α0i
= 0 deg deputy on the PCO disk ρi = 1 km

to α0f
= 90 deg on the PCO disk ρf = 2 km.

Fig. 5 Transferring theα0i
= 45 deg deputy on the GCO diskρi = 1 km

to α0f
= 60 deg on the GCO disk ρf = 2 km.

δi =
c2 f

a
cosα0 f −

c2i

a
cosα0i (69)

δ� =
c2 f

a

sinα0 f

sin i
−
c2i

a

sinα0i

sin i
(70)

δλ = δλ f − δλi = −δ� f cos i + δ�i cos i = −δ� cos i (71)

where α0i and α0 f , are the phase angles of the deputy on the initial
and final relative orbits, respectively. Figures 4 and 5 show two in-
stances of the transfer problem, accomplished using the two-impulse
scheme. It should be noted that both the scenarios involve chang-
ing the disk size as well as α0. The control scheme can also be
used to change α0 alone without changing the disk size after the
corresponding elemental differences are computed.

The satellite slot assignment problem involves assigning, for each
deputy characterized by α0i on the initial relative orbit, a unique α0 f

on the final relative orbit. Because there are infinite assignment

possibilities, a unique solution will be obtained by minimizing the
formationwide fuel consumption. Assuming there are k satellites in
the initial relative orbit, k slots are required in the final relative orbit,
for a unique pairing. The overall fuel consumption is proportional
to

k
�

l = 1

�Vl

where �V for each deputy is governed by α0i and the choice of α0 f

and is given by the following expression:

�V
�

α0i , α0 f

�

=
�

��Vh
�

α0i , α0 f

��

� +
�

��Vi
�

α0i , α0 f

��

� (72)

SubstitutingEqs. (33) and (62) intoEq. (72)we obtain the following:

�V
�

α0i , α0 f

�

=
�

(δi2 + δ�2 sin2 i)/γ +
�

�

δq21 + δq22

��

γ

(73)
Substituting the expressions for the elemental differences given by
Eqs. (67) to (70) into these equations, we obtain the following:

�V
�

α0i , α0 f

�

=

�

c2
2
i + c2

2
f − 2c2i c2 f cos

�

α0i − α0 f

�

aγ

+

�

c1
2
i + c1

2
f − 2c1i c1 f cos

�

α0i − α0 f

�

2aγ
(74)

Clearly, this expression attains its minimum value at α0i = α0 f . This
indicates that each satellite has a unique minimum-fuel transfer
target slot. Pairing each individual satellite with its minimum-fuel
slot also minimizes the overall fuel consumption. Therefore, the
optimal pairing assignment is α0i = α0 f . Also, the minimum value
is given by

�V =
|(c2 f − c2i )|

γ a
+

|(c1 f − c1i )|
2γ a

(75)

It should be noted that this expression is independent of α0i and
α0 f . Hence different satellites with different values of α0i consume
the same fuel to reach their optimal target slots, α0 f = α0i . There-
fore, the two-impulse analytical solution results in homogeneous
fuel consumption for different satellites in the formation during the
reconfiguration maneuver.

Comparison with Numerical Results

In this section, we compare the analytical solution with results
obtained using NPOPT,17 a numerical nonlinear optimization tool.
The formation reconfiguration problem has been posed as a two-
impulse optimization problem as follows:

Cost function |�Vr1 | + |�Vt1 | + |�Vh1 | + |�Vr2 |
+ |�Vt2 | + |�Vh2 |

Optimization variables �Vr1 , �Vt1 , �Vh1 , �Vr2 , �Vt2 , �Vh2 ,
θ1, θ2

Constraints Establishment of Eqs. (66–71)
Model Gauss’s variational equations, used for

constraint evaluation
Shown in Fig. 6 is a comparison of the analytical scheme
cost(continuous line) with the numerical cost(+ marks), for a
two-impulse PCO reconfiguration maneuver from ρi = 1 km to
ρ f = 2 km. Two plots have been shown, one for the α0i = 0 deg
satellite and the other for the α0i = 90 deg satellite. Plotted along
the x-axis is the target α0 and plotted along the y axis is the cost for
transferring the 0- and 90-deg satellites to the target α0. An all-zero
initial guess was used to obtain the optimal solution for transfer-
ring the α0 = 0 deg satellite to the α0 = 0 deg slot. The solution thus
obtained is used as an initial guess for the transfer to α0 = 10 deg
and the process is repeated to obtain solutions till 90 deg. The cost
resulting from the analytical scheme is found to differ from the cost
resulting from numerical optimization by less than 1%. The angu-
lar separation between the impulses was also found to differ from
180 deg by less than 1 deg for this PCO reconfiguration example.
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Fig. 6 Analytical control cost and optimized control cost for a PCO

reconfiguration.

Conclusions

Hill–Clohessy–Wiltshire formations are characterized in terms of
nonsingular orbital element differences. A two-impulse analytical
solution has been developed for the formation establishment and
reconfiguration problems. The analytical scheme not only provides
a fuel-optimal solution to the assignment problem, but also results
in homogeneous fuel consumption for different satellites in a for-
mation. Moreover, the results are found to match very closely with
similar results obtained by numerical optimization.
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