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A control law applicable for orbit transfer as well as formation reconfiguration

has been developed via a Lyapunov function similar to that used for spacecraft

attitude control. It utilizes feedback of kinematic and kinetic error states be-

tween the current and desired orbital frames, that are parameterized by Euler

parameters, orbit radius and its time derivative, and orbital angular veloci-

ties. The efficacy of the control law is demonstrated with examples, including

orbit transfers and formation reconfiguration, both with low-eccentricity and

high-eccentricity reference orbits, in the presence of J2 perturbations. Further

simplifications in the control law are introduced and it is shown that stability

is not affected. A methodology is proposed to reduce control requirement by

appropriate gain selection and control initiation at predefined locations. The

equivalent impulse requirements obtained for the examples compare very fa-

vorably with analytically and numerically optimized figures presented in other

published works.

Introduction

The problem of orbital transfers of satellites by the use of continuous, low-thrust

control has been studied in great detail. Recent advances in the field of electric

propulsion have made low-thrust propulsion an operational reality. Formation flying

of spacecraft is also a relatively new area of research wherein control of relative motion

is a key element. Control of relative motion requires controlling each satellite’s orbit

precisely, with high regard for inter-satellite distances, collision hazards, and other
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operational constraints.

The primary purpose of this paper is to develop a Lyapunov-based control law that

has a large range of applicability, free from the influence of singularities that arise

from the more common descriptions of a satellite’s orbit, such as orbital elements.

Previous studies in the literature have addressed the problem of continuous-thrust

orbit transfer using Lyapunov function-based feedback controllers. Ilgen1 uses or-

bital element feedback for orbital transfers, using the classical as well as equinoctial

elements. Ilgen’s quadratic Lyapunov function is based on only five of the orbital

elements. Gurfil2 uses classical orbital element feedback for orbital transfer and ex-

plores nonlinear controllability issues of the problem, and is able to prove by using

Gauss variational equations that a spacecraft’s orbital elements can be controlled by

continuous control, except when the desired orbit is parabolic. Chang et al.3 ap-

proach the problem of orbital transfer by feeding back the angular momentum and

eccentricity vectors. References 1–3 provide excellent bases for the development of

Lyapunov function-based controllers for formation reconfiguration using orbital ele-

ments. Schaub and Alfriend4 use the local Cartesian coordinates of the Chief/leader

satellite and the differential orbital elements between the Deputy/follower satellite

and the Chief as feedback. Schaub et al.5 present two control laws, one in terms of

mean elements, and another in terms of inertial coordinates, for formation control,

with the added simplification of using mean elements in the presence of J2 pertur-

bations arising due to a non-spherical Earth model. This reference also proposes a

periodic gain-selection procedure, so that individual orbit element errors are corrected

at proper locations along the orbit. Naasz6 uses classical, as well as, equinoctial or-

bital element feedback for formation control. While the mean anomaly at epoch can

be controlled directly, the mean anomaly at the desired time is tracked by specifying

a new desired semimajor axis, which asymptotically approaches the original desired

semimajor axis. Wang and Hadaegh7 explore optimal strategies for formation control

in rectilinear motion.

Junkins and Turner8 develop an analogy between orbital motion and rigid body dy-

namics. In their work, orbital dynamics is characterized by a set of Euler parameters
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for describing the kinematics and three angular velocities of the orbit frame with

respect to the inertial frame. Kechichian9 derives relative motion equations based

upon a similar model, which account for J2 and drag perturbations. There are many

advantages to such an approach. First, unlike the inertial coordinate description, the

kinematic approach offers scope for physical insight into the problem, as will be shown

in the model and control law description. Second, unlike control laws that use clas-

sical orbital elements, singularities arising due to zero-eccentricity or zero-inclination

are very easily avoided if Euler parameters (EPs) are used instead of the 3-1-3 Euler

angles, viz., right ascension Ω, inclination i, argument of perigee ω, and true (resp.

mean or eccentric) anomaly ν (resp. M or E). Thus it is possible to transfer from

or to an equatorial, circular orbit without encountering singularities in the control

law. This comes at the added cost of an extra state (four Euler parameters instead

of three Euler angles), but EPs also provide a very convenient linear formulation for

relative orientations, which is exploited in the derivation of the control law for orbital

transfers. Hence, the kinematic approach has the advantages of both the inertial

coordinate as well as orbital element approaches. Finally, since satellite ranging pro-

vides spacecraft range, range rate, elevation and azimuth, it is convenient to use these

quantities directly in the control law.

A set of benchmark problems for spacecraft formation flying missions has been pro-

posed by Carpenter et al.,10 that include reference low Earth orbit (LEO) and highly

elliptical orbit (HEO) missions. The LEO mission benchmark has a near-circular,

sun-synchronous reference orbit and the formation is required to be in a 500m pro-

jected circular relative orbit. The Magnetosphere Multiscale Mission (MMS)11 is an

example of a HEO formation flight mission, where the apogee and perigee are of the

order of 12-30Re and 1.2Re, respectively (with Re denoting the radius of the Earth),

yielding eccentricities of the order of 0.8 and higher. The requirement of formation

reconfiguration may arise when, for example, one of the Deputies fails, or a change is

required in their relative positions with respect to the Chief.

Boundary conditions for establishing formations in low-eccentricity orbits can be ob-

tained from the Hill-Clohessy-Wiltshire (HCW)12 model, which is the most elemen-
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tary relative motion model in a gravitational field. It assumes a circular reference

orbit, a linearized differential gravitational acceleration, and spherical Earth. Refer-

ences 13 and 14 extend the model to account for low eccentricities and higher-order

differential gravity terms. The J2 perturbation results in secular growth in some of

the orbital elements, thereby causing drift in relative motion. This drift can be elim-

inated in the mean sense by using two matching constraints for small orbital element

differences, resulting in J2-invariant orbits.15 However, the relative orbits obtained

by such a technique may not be suitable for some missions. As an alternative, a

rate-matching constraint has been developed in Ref. 16 that keeps the along-track

motion bounded in the presence of J2.

This paper first presents the kinematic model for satellite motion and derives a

Lyapunov-based feedback control law for orbital transfer. The control law takes into

account modeled disturbances. Global, asymptotic stability is shown by the use of

LaSalle’s theorem. The application of this control law is shown to the particular cases

of orbit transfer where the initial or target orbit may have an associated singularity

(in terms of orbital elements), and to formation reconfiguration. In both the cases,

gain-selection procedures are proposed that are able to reduce control requirements

close to their optimal values. When large radius changes are involved, a method is

proposed for tracking a spiral trajectory between the initial and desired orbits, gen-

erated by using a circumferential thrust assumption. The effect of neglecting J2 on

the performance of the controller is analyzed theoretically as well as numerically. All

the developments are supported by numerical examples.

Kinematic Model for Satellite Motion

Frames of Reference

Two frames of reference are considered: 1) The Earth-Centered Inertial (ECI) frame,

denoted by N , with basis BN = {iX iY iZ}. The vector iX lies in the equatorial

plane, along the line of the equinoxes, the vector iZ is aligned with the North Pole,

and iY = iZ × iX . 2) The Local-Vertical-Local-Horizontal (LVLH) frame, denoted by
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L for each spacecraft, with basis BL = {ir iθ ih}. The vector ir lies along the radius

vector from the center of the Earth to the spacecraft, ih is normal to the plane defined

by the position and velocity vectors of the spacecraft, and iθ = ih × ir. A vector in

N can be transformed into L through the direction cosine matrix C. This matrix

can either be characterized by an Euler 3-1-3 rotation,17 using the right ascension Ω,

inclination i, and argument of latitude θ, or by Euler parameters β0...3. For any orbit,

θ = ω + f , where ω is the argument of perigee and f is the true anomaly.

Equations of Motion

If the position vector of the spacecraft in L is r = rir, the inertial acceleration

expressed in BL is:

r̈ =
d2r

dt2
+ 2ω × dr

dt
+ ω̇ × r + ω × ω × r

=
[
r̈ −

(
ωh

2 + ωθ
2
)
r
]
ir + [ω̇hr + 2ωhṙ + ωrωθr] iθ

+ [−ω̇θr − 2ωθṙ + ωrωhr] ih

= urir + uθiθ + uhih −
µ

r2
ir = u + g (1)

where, u ∈ R
3 is the control applied on the spacecraft, expressed in BL, g is the

two-body gravitational attraction, and ω = ωrir + ωθiθ + ωhih, is the inertial angular

velocity vector expressed in BL. Reference 17 provides detailed description of the

angular velocity in terms of either the EPs or Euler angles, and their respective rates.

It is also shown in Ref. 8 that an osculation constraint exists such that ωθ = 0. Thus,

for the complete characterization of an orbit, the seven states {r ṙ ωh β0...3}T

are required, with
∑

β2
i = 1. The angular velocity about ir is determined by setting

ωθ = ω̇θ = 0 in the h-component of r̈ in Eq. (1):

ωr =
uh

rωh

(2)

If the external force in the orbit normal direction is zero, then ωr = 0.

For physical insight into the states of the kinematic model, it must first be stated
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that the quantities described above are always defined, irrespective of e = 0 or i = 0.

The significance of r and ṙ are obvious; ωh is equal to h/r2 where h is the angular

momentum of the spacecraft. Furthermore, from Ref. 17 (using θ = ω + f),

β0 = cos
i

2
cos

Ω + θ

2
β1 = sin

i

2
cos

Ω − θ

2

(3)

β2 = sin
i

2
sin

Ω − θ

2
β3 = cos

i

2
sin

Ω + θ

2

The EPs are similar in many respects the equinoctial elements. For example, if i = 0,

then Ω+ω (or Ω+θ) is defined, but Ω and ω (or θ) cannot be determined independent

of each other. In the above expression, it is observed that in such a case, β1 = β2 = 0,

and β0 = cos(Ω + θ)/2 and β1 = sin(Ω + θ)/2.

The direction cosine matrix that transforms a vector in N into one in L, is composed

using EPs:

C =




β2
0 + β2

1 − β2
2 − β2

3 2 (β1β2 + β0β3) 2 (β1β3 − β0β2)

2 (β1β2 − β0β3) β2
0 − β2

1 + β2
2 − β2

3 2 (β2β3 + β0β1)

2 (β1β3 + β0β2) 2 (β2β3 − β0β1) β2
0 − β2

1 − β2
2 + β2

3


 (4)

A Lyapunov Approach to Orbital Transfer

In this section, a continuous control law for orbital transfer is discussed. It is as-

sumed that the spacecraft is a point mass, and measurement and actuator errors are

neglected. Let β denote the EPs for the spacecraft’s current position. The accel-

eration vector of the spacecraft in BL, from Eq. (1), is equal to the external forces

in BL, i.e., r̈ = u + d, where u ∈ R
3 is the control acceleration and d ∈ R

3 is

modeled-disturbance vector. For example, the J2-induced disturbances9 are:

d =





dr

dθ

dh





= −3

2

J2µR2
e

r4





1 − 12 (β1β3 − β0β2)
2

8 (β1β3 − β0β2) (β0β1 + β2β3)

4 (1 − 2β2
1 − 2β2

2) (β0β1 + β2β3)





(5)

6



where J2 = 1.082629 × 10−3, and with EPs substituted for the Euler angles i and θ.

The ir component of angular velocity ω is thus ωr = (uh + dh)/(ωhr).

Let βdes denote the desired EPs for the spacecraft. Then the Error EPs, denoted by

∆β, characterize the current orientation of BL with respect to its desired orientation.

The Error, desired, and current EPs are related by the following:17





∆β0

∆β1

∆β2

∆β3





=




β0 β1 β2 β3

β1 −β0 −β3 β2

β2 β3 −β0 −β1

β3 −β2 β1 −β0








βdes0

βdes1

βdes2

βdes3





(6)

The kinematic equations that relate the ∆β to the relative angular velocity are”





∆β̇0

∆β̇1

∆β̇2

∆β̇3





=
1

2




0 −∆ωr −∆ωθ −∆ωh

∆ωr 0 ∆ωh −∆ωθ

∆ωθ −∆ωh 0 ∆ωr

∆ωh ∆ωθ −∆ωr 0








∆β0

∆β1

∆β2

∆β3





(7)

where ∆ω is the inertial angular velocity of the current L frame with respect to its

desired orientation, expressed in BL. That is,

∆ω = ω − Crelωdes (8)

Crel = C(β)CT (βdes) = C(∆β) (9)

The Lyapunov Function for General Orbit Transfers

Let the subscript ‘des’ denote the states corresponding to the desired trajectory. If the

desired trajectory is a natural (thrust-free) solution to the two-body problem, then

the quantities r̈des and ω̇desh
can be obtained by using the desired states in Eq. (1). In

this case, no control action is required to maintain the desired states after the orbit

has been established. On the other hand, if the desired states do not correspond to a

Keplerian orbit, and evolve with time according to specified equations, thrust will be
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required to maintain the required motion. The modeled disturbance for the desired

trajectory can also be determined in terms of the desired states.

Let z =
{
∆βT ∆′ωh ∆r ∆ṙ

}T ∈ Z = S
3 × X, where S

3 is the 3-sphere, and

X ⊂ R
3. The errors ∆′ωr and ∆′ωh are the components of the direct difference

between the current and desired angular velocity vectors, ∆′ω = ω−ωdes. In general,

∆′ω 6= ∆ω. Obviously, ∆′ωθ = 0, due to the osculation constraint. The last two

terms in z correspond to the error between the current and desired radial distance,

and current and desired radial velocity, respectively. The Lyapunov function, V :

Z −→ R≥0, is defined as the following:

V = (1 − ∆β0)
2 + ∆̃β

T
∆̃β +

K1

2
∆′ω2

h +
K2

2
∆r2 +

K3

2
∆ṙ2 (10)

where Ki ∈ R
+, and ∆̃β = {∆β1 ∆β2 ∆β3}T is the reduced error EP set. When the

current LVLH frame aligns with the desired LVLH frame, ∆β = {1 0 0 0}T , and

all the other error states are zero. This is the desired equilibrium, denoted by zeq,

and it is clear that V (zeq) = 0 and V (z) > 0 ∀z ∈ Z\{zeq} .

A control law that asymptotically stabilizes the current orbit with respect to the

desired orbit can be obtained by taking the time derivative of the Lyapunov function:

V̇ = −2∆β̇0 + K1∆
′ωh∆

′ω̇h + K2∆r∆ṙ + K3∆ṙ∆r̈ (11)

where ∆r̈ = r̈ − r̈des. The reduced EP set is an eigenvector of the corresponding

direction cosine matrix. Consequently, Crel∆̃β = CT
rel∆̃β = ∆̃β, and it follows that

∆ωT ∆̃β = ∆′ωT∆̃β. Using this relation in Eq. (11):

V̇ = ∆′ωr∆β1 + ∆′ωh (∆β3 + K1∆
′ω̇h) + ∆ṙ (K2∆r + K3∆r̈) (12)

To ensure V̇ (z) ≤ 0 ∀z ∈ Z the following substitutions are made:

∆′ωr = ωr − ωdesr
= −K4∆β1 (13a)

K1∆
′ω̇h = K1 (ω̇h − ω̇desh

) = −K5∆
′ωh − ∆β3 (13b)
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K3∆r̈ = −K6∆ṙ − K2∆r (13c)

with K4...6 ∈ R
+. For convenience, one may set c1 = K6/K3, c2 = K2/K3, c3 =

K5/K1, c4 = 1/K1, and c5 = K4. Equations (13), along with Eq. (1) with the explicit

disturbing modeling (replacing u with u + d), lead to the following control laws that

stabilize the system about the origin:

ur = −c1∆ṙ − c2∆r − ω2
hr +

µ

r2
− dr + r̈des (14a)

uθ = −c3∆
′ωhr − c4∆β3r + 2ωhṙ − dθ + ω̇desh

r (14b)

uh = −c5∆β1ωhr − dh + wdesr
ωhrh (14c)

By substituting Eqs. (13) in Eq. (12), the time derivative of the Lyapunov reduces

to

V̇ = −K4∆β2
1 − K5∆

′ω2
h − K6∆ṙ2 (15)

It is not immediately obvious that V̇ (z) < 0 ∀z ∈ Z\{zeq}. Asymptotic stability of

the system is shown using LaSalle’s Theorem, and is presented in the appendix.

It is noted from Eq. (15) that the gains K4...6 are incorporated to ensure V̇ (z) ≤ 0,

and while are positive, are not restricted to being constant. Consequently, the gains

c1, c3, and c5 can be selected to be time-varying and positive, without affecting

stability. Such an approach has been used in Ref. 5. References 5 and 18 use the

structure of Gauss’ equations to obtain locations for velocity increment application in

the impulsive control problem. For example, it is well-known that for low-eccentricity

transfers, out-of-plane corrections should be performed when the two orbits cross at

their common nodes. This is directly reflected in the uh component of the control

law. In terms of orbital elements, the latitude of common node crossing is given by

tan θdes = ∆Ω sin ides/∆i. For small angular differences, it can be shown that:

∆β0 ≈ 1, ∆β1 ≈
∆i

2
cos θdes +

∆Ω

2
sin ides sin θdes

(16)
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∆β2 ≈ −∆i

2
sin θdes +

∆Ω

2
sin ides cos θdes, ∆β3 ≈

∆θ

2
+

∆Ω

2
cos ides

Thus, to first approximations the crossing of common nodes occurs when ∆β2 = 0, or

when ∆β1 takes an extreme value, since d∆β1/dθdes = ∆β2. Since Eq. (15) has ∆β2
1

as a term, its contribution to V̇ is highest at this point. Thus, out-of-plane control

is best applied when ∆β2 = 0. This is under the assumption that ωhr (velocity in

the along-track direction) is nearly constant, which is true for near-circular orbits.

For highly eccentric orbits, rωh is the smallest at application points near the apogee;

this implies that proper out-of-plane control application points will be close to the

apogee.19 Thus the gains can be adjusted accordingly, depending on which quantity

takes priority and the type of transfer desired.

Applications to Transfers to Large Orbits

While the control law derived in the previous section can be used for any transfer,

a level of sub-optimality can be achieved by using the physical characteristics of the

problem effectively. Spencer and Culp20 develop a method for orbital transfer from

a parking orbit to MEO/GEO by using equinoctial elements, and by dividing the

problem into different stages. The primary motivation behind the staging algorithm in

this problem is that if initial errors are very large (as is the case for transfers involving

large changes), then the initial acceleration levels demanded by the controller will be

very large. Not only does this result in higher control requirements, it is also possible

that constraints on thruster design may limit the availability of such thrust levels.

Furthermore, seeing that the out-of-plane problem can be treated separate from the

in-plane problem, it is more economical to make inclination or right ascension changes

in the larger of the initial or final orbit, since velocity levels are lower in larger orbits.

Therefore, the problem of transferring to a large orbit can be divided into two parts:

1) in-plane control law transferring the spacecraft outwards following a spiral reference

trajectory to the desired orbit, and 2) generalized control law to bring the spacecraft

to its desired final states. The first stage is studied in greater detail.
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Reference Trajectories for In-Plane Transfer

In the first stage, it is desired to move the satellite slowly outwards until it reaches

the radial distance of the desired orbit. This ‘transfer orbit’ is obtained by tracking

the following approximate solution arising as a result of constant, low, circumferential

thrust:21,22

r(t) = r0

(
1 − ūθt

v0

)−2

(17a)

θ(t) = θ0 +
v2
0

4r0ūθ

[
1 −

(
1 − ūθt

v0

)4
]

(17b)

where ūθ is the constant circumferential thrust and v0 is the velocity corresponding

to the initial circular orbit. The quantity θ is defined for zero eccentricities. If initial

inclination is also zero, then θ + Ω should be used instead of θ in Eq. (17b). An

attempt is made to reduce the phasing required once the radial distance of the target

orbit, rf , has been reached. This is made possible if the final argument of latitude, θf

of the transfer trajectory, is the same as, or as close as possible to, the argument of

latitude of the desired trajectory, which is obtained from the desired EPs. Thus, given

tf , rf and θf , the quantities ūθ, and θ0 can be determined uniquely from Eqs. (17a)

and (17b). In the event the final orbit is non-circular, rf and θf should correspond to

the desired orbit’s apogee. This is desired so that the terminal control law initiates

in a region where the velocity is low, as opposed to region where the velocity is high.

Navigational errors are also smaller at apogee than at perigee because of the rapid

change in system states in the latter region.

It is now assumed that the maneuver of the spacecraft starts at the point on its initial

orbit, where θ = θ0. This does not affect stability of the control law since only the

initial conditions of the system change. For zero initial eccentricities, as is assumed

in Ref. 21, r0 is constant, but for low eccentricities, at this value of θ0, the radius

also changes. Consequently, Eqs. (17a) and (17b) are solved iteratively using the

r0 corresponding to the updated θ0, until θ0 and ūθ converge to within a predefined

tolerance. The first quantity is used to define the initiation point of the control, and
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the second quantity is a shaping parameter for the reference transfer trajectory.

In-Plane Tracking of the Reference Trajectory

From Eqs. (17a) and (17b), and their higher derivatives, the quantities rdes, ṙdes, r̈des,

ωdesh
and ω̇desh

are obtained as functions of time. Tracking of this in-plane trajectory

is performed by using a modified form of Eq. (10), without the error Euler parameter

terms. Therefore, the new Lyapunov function Vip : X −→ R≥0, is defined as:

Vip(z̃) =
K1

2
∆′ω2

h +
K2

2
∆r2 +

K3

2
∆ṙ2 (18)

where z̃ only comprises the radial, radial velocity and out-of-plane component of

angular velocity errors. It can be shown that control laws to render V̇ip negative

definite can be obtained trivially from Eq. (14), by setting c4 = c5 = 0, and the only

equilibrium is ωh = ωdesh
, r = rdes, and ṙ = ṙdes, as desired.

Gain Selection

In the transfer stage, high values for c3 need to be selected to control the ωh error.

The analysis in Ref. 21 assumes that the radial thrust is negligible, and centripetal

acceleration ω2
hr is nearly equal to gravitational attraction µ/r2. If ωh errors are

not reduced quickly, this results in added radial control, increasing the total control

requirement.

In the second stage, choices for gains can be made by studying the dynamics of the

closed-loop system. By substituting Eq. (14) in Eq. (1), the following equations are

obtained.

∆r̈ + c1∆ṙ + c2∆r = 0 (19a)

∆′ω̇h + c3∆
′ωh + c4∆β3 = 0 (19b)

∆′ωr + c5∆β1 = 0 (19c)

From the radial equation, judicious choices for the gains are c2 = O(n2) and c1 =
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2
√

c2, where n is a natural frequency that is governed by the desired time of conver-

gence, and can be taken to be the mean motion of the target orbit. Similar analysis can

be performed on the attitude equations, with the small angular difference assumptions

in Eq. (16). Then, it can be shown that ∆′ωh ≈ 2∆β̇3. The third of the closed-loop

equations is coupled with ∆β2, and consequently yields, ∆β̈1 + c5∆β̇1 + n2∆β1 = 0.

Therefore, for these cases, c4/2 = O(n2), and c3 =
√

(2c4). To encourage out-of-

plane control application at locations where ∆β2 = 0, a time-varying gain such as

c5 = c50e
−k|∆β2|, k > 0, is used. The maximum value can be chosen from the small

angular difference assumptions, or c50 ≈ 2n. These provide excellent initial guesses

for the gains to be used in the control law, even when applied to the problem of

formation reconfiguration. Further tuning of the gains becomes necessary if the mis-

sion requirements change; for example, a faster transfer will require a higher natural

frequency of the closed-loop system.

Applications to Formation Reconfiguration

Relative Motion and Initial Conditions

The HCW equations12 are a set of three, second-order, linear differential equations

that govern the motion of a Deputy satellite relative to the Chief satellite, in the

LVLH frame of the Chief, with x, y, and z as the relative positions along the radial,

along-track and normal directions. The HCW initial conditions are those that do not

allow secular along-track growth. In particular, projected circular orbits (PCO) have

the following solution:

x =
ρ

2
sin(nCt + α0) (20a)

y = ρ cos(nCt + α0) (20b)

z = ρ sin(nCt + α0) (20c)

where, ρ is the relative orbit radius, and α0 is the initial phase angle. ρ and α0 are

shown with respect to the LVLH frame of the Chief in Fig. 1. Vadali et al.16 derived

differential orbital elements corresponding to the PCO conditions, by linearizing the
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direction cosine matrix of the Deputy with respect to that of the Chief. With the

additional use of the rate-matching constraint to account for J2 effects, initial orbital

element differences valid for very low eccentricity reference orbits can be obtained as

shown:

δa =
1

2
J2

(
R2

e

aC

)
(3η + 4)

η4

[
−(1 − 3 cos2 iC)

eC

η2
δe − sin 2iCδi

]
(21a)

δe = − ρ

2aC

sin(ωC + α0) (21b)

δi =
ρ

aC

cos α0 (21c)

δΩ = − ρ

aC

sin α0

sin iC
(21d)

δω = − ρ

2aCeC

cos(ωC + α0) +
ρ

aC

cos iC sin α0

sin iC
(21e)

δM =
ρ

2aCeC

cos(ωC + α0) (21f)

where, η =
√

(1 − e2
C), and the subscript C denotes elements of the Chief. Similarly,

the subscript D will denote the elements of the Deputy.

The condition on δa corresponds to the period-matching condition in Ref. 16. In the

absence of J2, this would be zero to ensure no drift between the Deputy and Chief.

The rest of the elemental differences correspond to the PCO requirement.

It should be noted that the differential elements may be expressed in characterizations

other than classical orbital elements. For example, Ref. 15 provides initial orbit

differences using Delauney elements, while Ref. 18 characterizes such differences using

nonsingular elements. Irrespective of the characterization, conversion from any of the

orbital element sets to kinematic states is straightforward and without singularities.

Simplification the Control Law

It is evident that the control components specified in Eqs. (14) require knowledge of

the elements at every instant. In the absence of perturbations, the desired trajectory

can be propagated analytically from the initial conditions. If the J2 perturbation is

included, then simulations also show that mean elements can be used to analytically
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propagate the desired orbit, though at this point it is not possible to show in what

region the errors lie. The use of mean elements enables the treatment of a, e, and

i as constants, and the right ascension, argument of perigee, and mean anomaly as

linear functions of time.

More importantly, it can be observed that the modeled disturbance accelerations in

Eqs. (14) are expressed as the differences between their current values and desired

values. For cases involving J2, considerable simplification of the control law is possible

by dropping these terms. Appendix B studies the effects of such an action.

Correct Position for Initiating the Control

As will be shown in the numerical simulations, initiating the control at arbitrary

points leads to excessive control acceleration. By seeking positions where the control

requirement is minimal, one can aim to reduce the total control requirement for the

reconfiguration. This is especially useful for formation reconfiguration, since it is

assumed that the Deputy is already in a regular formation about the Chief, and

consequently, does not drift too far from this region. Furthermore, it is assumed that

the control is active throughout, once initiated. Initiating the control at a point other

than t = 0 has no effect on the stability of the law, since it only changes the initial

conditions.

Low-Eccentricity Reference Orbit

By using the small angular difference approximations, the condition for best use of

an out-of-plane control correspond to ∆β2 = 0. Thus, the appropriate value of the

Deputy’s argument of latitude, θDappl
, for initiating control, is given by:

θDappl
= tan−1

(
∆Ω sin iD

∆i

)
(22)

From Eq. (21),

∆Ω = δΩfinal − δΩinitial = − 1

aC sin iC

(
ρf sin α0f

− ρi sin α0i

)
(23a)
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∆i = δifinal − δinitial =
1

aC

(
ρf cos α0f

− ρi cos α0i

)
(23b)

Substituting Eqs. (23) in Eq. (22), the following expression is obtained:

θDappl
= ωD + fDappl

= tan−1

[
−

(
sin iD
sin iC

) (
ρf sin α0f

− ρi sin α0i

ρf cos α0f
− ρi cos α0i

)]
(24)

Equation (24) has two solutions, corresponding to each nodal crossing. Without loss

of generality, the one closest to epoch is selected.

It will be shown in the numerical simulations that the initiation of control at a true

anomaly of fDappl
shows lower TCR than an initiation anywhere else.

High-Eccentricity Reference Orbit or the Most General Case

For formations where the eccentricity of the reference orbit is very high, the approach

in the previous section is no longer valid. This is because, the magnitude of control

required in the orbit normal direction is much less than that required in the radial

and circumferential directions. The position for minimal control in the orbit normal

direction, therefore, does not necessarily imply a minimum for the magnitude of the

total control. Furthermore, for very high eccentricities, Ref. 19 obtains results that

indicate that the velocity increments (in the case of a two-impulse optimal control

problem) are best applied in the region of the apogee of the Deputy’s orbit.

From the observation in the beginning of this section, it is logical to conclude that

the control should be initiated at the point where its magnitude is a minimum. To

this end, a function Ψ is defined as the following:

Ψ = |u|2 = u2
r + u2

θ + u2
h (25)

The appropriate position can be obtained by minimizing Ψ with respect to the ec-

centric anomaly, i.e., by setting its derivative with respect to ED to zero. The use

of eccentric anomaly as the independent variable is preferred over true anomaly due

to the less-complex nature of equations, and is more amenable than the use of time,
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due to the increase in rate of change of quantities near the perigee. Neglecting J2,

the three components of control from Eq. (14) are used in Eq. (25). The calculation

of their derivatives requires the following expressions:

∂rD

∂ED

= aDeD sin ED (26a)

∂ṙD

∂ED

=
nDaDeD

(1 − eD cos ED)2
(cos ED − eD) (26b)

∂ωDh

ED

= −2hD

r3
D

∂rD

∂ED

(26c)

∂∆β1

∂ED

=
1

2
∆β2

(
dfD

dED

+
dfDdes

dEDdes

dEDdes

dED

)
(26d)

∂∆β3

∂ED

=
1

2
∆β0

(
dfD

dED

− dfDdes

dEDdes

dEDdes

dED

)
(26e)

where dfD/dED =
√

1 − e2
D/(1 − eD cos ED).

The expressions corresponding to the desired states can be obtained in a similar

manner, by substituting the desired orbital elements in the above equations. For

example,

∂rDdes

∂ED

= aDdes
eDdes

sin EDdes

dEDdes

dED

dEDdes

dED

=
dEDdes

dt
/
dED

dt
=

nDdes

nD

(1 − eD cos ED)

(1 − eDdes
cos EDdes

)
(27)

The inverse solution to Kepler’s equation, MDdes
= EDdes

− eDdes
sin EDdes

, is used to

evaluate EDdes
. Since eccentricity expansions can only be used when the eccentricity

of an orbit is less than 0.6627,22 Kepler’s equation needs to be solved iteratively. It

should be noted that eDdes
is a constant, and MDdes

= MC+δM , where δM is constant.

The mean anomaly of the Chief can be obtained by solving Kepler’s equation directly

from EC , which is obtained from the following equations:

dEC

dED

=
nC

nD

(1 − eD cos ED)

(1 − eC cos EC)
(28)

EC ≈ EC0
+

dEC

dED

∣∣∣∣∣
EC=ED

(ED − ED0
) (29)
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The approximation shown above allows the treatment of dEDdes
/dED and EDdes

as

nonlinear functions of ED alone, since the other quantities in Eq. (27) are constants

for the given orbit of the Chief and the initial orbit of the Deputy. Equations (27)-

(29) can be used with Eq. (26), and the corresponding equations for the desired states

and their derivatives, to evaluate the minimum of Eq. (25). Thus, Ψ = Ψ(ED) only;

its zeros, given by EDappl
, can be obtained by any numerically iterative procedure.

For cases with high-eccentricity reference orbits, acceptable values are in the region

of the apogee; therefore, EDappl
= π can be used as an initial guess. If the initial time

corresponds to the perigee location, then values that are less than π are preferred

over those that are greater than π, due to the time of operation.

Numerical Simulations

Orbital Transfer

Herman and Spencer23 obtain open-loop optimal solutions using continuous thrust

for various cases of LEO to MEO and LEO to GEO transfer, using different levels

of constant thrust. An example from Ref. 23 is used as a means of comparing the

developed control law with existing literature. The transfer considered is one from

a parking orbit of semimajor axis 7, 003 km, eccentricity 0.005, and inclination 30◦

(other elements zero), to a circular MEO of radius 26, 560 km and inclination 54.7◦

(other elements zero), and is shown in Fig. 2. While the models include the pertur-

bations due to J2, the control laws do not. The nominal time for transfer from the

LEO to the planar MEO is chosen to be three days. For the transfer stage, the gains

are chosen as c3 = 0.1, c2 = 1 × 10−5, and c1 =
√

(2c2). For the second stage, the

gains are chosen as c1 = c3 = 4 × 10−4, c2 = 4 × 10−8, and c4 = 8 × 10−8. The

gain c5 = 4 × 10−4e−100|∆β2|. The generation of the reference spiral trajectory from

Eqs. (17a) and (17b) results in ūθ = 2.12 × 10−2 m/s2, and θ0 of 135.92◦. That is,

control is initiated approximately 92 minutes after the beginning of the simulation.

Figure 3 shows the control profile for this transfer. It is observed that uθ for the

transfer stage is approximately 2.02× 10−2 m/s2, which is very close to the predicted

value. Furthermore, an initial radial control is required to bring the spacecraft to the
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spiralling reference, which reduces to near-zero almost immediately. Though the con-

trol appears impulse-like due to the scale of time on the x-axis, it is actually applied

over a period of 15-20 minutes. In the second stage, most of the control is applied for

inclination change, and due to the nature of the gain c5, is selectively applied when

the spacecraft crosses the line of nodes.

The total control requirement (TCR) uses the single thruster assumption and cal-

culates the integral of the 2-norm of the control vector. It is thus analogous to ∆v

for impulsive maneuvers. The TCR for this maneuver is shown in Fig. 4, and is ap-

proximately 6.5 km/s. The second stage of the transfer is terminated once the radial

error is less than 10cm and the reduced error EPs are smaller than 1× 10−5, and the

total transfer takes approximately 5 days. The open-loop optimal transfer in Ref. 23

does not include control of the position on the desired orbit, and using a constant

thrust of 0.01 m/s2, transfers to the desired orbit in 5-6 days using a ∆v-equivalent

of 5.1 km/s. Additional fuel will be required to achieve correct phasing in the orbit.

Improved performance of the control law can be achieved using a better reference

profile as a well as optimized gain selection.

Low Eccentricity Formation Reconfiguration

A reconfiguration for a formation in low-eccentricity reference orbit is considered.

The choice of gains follows from the small angular difference assumptions outlined in

the development of the control law. The elements of the Chief’s orbit are eC = {aC

eC iC ΩC0
ωC0

MC0
}T = {7100 km 0.005 70◦ 0◦ 0◦ 0◦}T . The initial configuration

of the relative orbit has ρ = 1 km and α0 = 0◦. Figures 5(i) and 5(ii) show the θ-h

projection of the reconfiguration to ρ = 2 km, α0 = 0◦, and the TCR in the presence

and absence of J2. The reconfiguration for the α0f
= 0◦ case is very similar to the

impulsive reconfiguration in Ref. 19, except for the overshoot in the −y direction.

The numerical value of the TCR, however, is slightly higher than the total velocity

increment required in the two-impulse optimal reconfiguration, presented in Ref. 19,

which is approximately 1.1 m/s.

Figure 6 shows the control history for this reconfiguration. The magnitude of the
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control requirement is maximum at the beginning of the maneuver, which allows its

approximation as a single velocity impulse for the purpose of analysis. If the phase

angles of the initial and final configurations are the same, then, letting α0i
= α0f

= α0,

it can be shown that Eq. (24) reduces to:

tan θDappl
≈ − tanα0

or θDappl
= π − α0 (30)

Figure 7 compares the TCR for three arbitrary cases where the initial and final phase

angles are equal. It is observed that the TCR in all three cases have negligible dif-

ference. This is achieved by initiating reconfiguration at the appropriate position.

Figure 8(i) shows the reconfiguration from the given initial formation, to a formation

with ρ = 2 km and α0 = 90◦. Since fDappl
6= 0, it is observed that the Deputy continues

on its initial relative orbit for some time before control is applied. The TCR for this

reconfiguration is shown in Fig. 8(ii). It is observed that if the reconfiguration is ini-

tiated at fD = 0◦, the TCR is approximately 8 m/s. By initiating the reconfiguration

at the appropriate location, the TCR is reduced to approximately 3.5 m/s. This is

comparable to the total velocity increment of 2.6 m/s, in the impulsive reconfiguration

in Ref. 19.

Minimization of the function Ψ in Eq. (25) by finding the zeros of its derivative,

yields two minima, which correspond to the analytical expression in Eq. (24), one of

which corresponds to the solution from Eq. (24). Thus one can conclude that the

more trivial expression derived for low-eccentricity references, is a special case of the

general minimization problem posed in Eq. (25).

By initiating the control at the appropriate location, the same set of gains can be used

for a large class of low-eccentricity reconfigurations. The Lyapunov function selected

does not yield controls for optimal (lowest) fuel consumption; since optimality has

not been considered in the derivation. Therefore, control requirements lower than

those from the impulsive algorithm in Ref. 19 can never be obtained with the specific

structure of the Lyapunov function selected.
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High Eccentricity Reference Orbit

The theory used to derive the initial conditions for the PCO is valid only for low

eccentricities, since it involves eccentricity expansions of the true anomaly in terms

of the mean anomaly, correct only to the first order. Therefore, relative orbits using

initial conditions from Eq. (21) in general do not provide circular orbits if the reference

orbit eccentricity is high. There is at present, no characterization for such orbits for

highly eccentric reference orbits. For the sake of convenience, the orbital element

differences in Eq. (21) will be used to in this example.

While all simulations account for the J2 perturbation, for high eccentricity reconfigu-

rations, the mean element-based control law does not provide adequate performance.

It is observed that the simplified model tracks the mean desired elements of the

Deputy satellite very well, but when the control is applied to the true system, no-

ticeable drift is seen. It thus becomes necessary to use osculating elements for the

desired Deputy trajectory, obtained from integration of the truth model.

The high-eccentricity reconfiguration example chosen has a reference orbit similar to

that of the MMS mission, and is characterized by eC = {42095.70 km 0.8182 50◦ 0◦

0◦ 0◦}T . These orbital elements correspond to an orbit with distances of apogee and

perigee, given by ra = 12Re, and rp = 1.2Re, respectively. Let the initial formation be

characterized by ρ = 10 km and α0 = 0◦ and let the desired formation be characterized

by ρ = 20 km and α0 = 0◦. Figure 9(i) shows the variation of the function Ψ from

Eq. (25), with the true anomaly of the Deputy. The second panel magnifies the region

0.42 ≤ fD/2π ≤ 0.45, showing that the minimum of Ψ occurs prior to the apogee. By

using the algorithm to find the zeros of Ψ′, fDappl
= 150.27◦. This can also be observed

in Fig. 9(ii). Figure 10(i) shows the resulting reconfiguration, and Fig. 10(ii) shows

the TCR for this reconfiguration. The TCR in the presence of J2 is slightly higher.

For comparison, the total velocity increment required from the optimal impulsive

reconfiguration is approximately 0.6 m/s for the same reconfiguation. The impulsive

reconfiguration performs better, since both impulses are placed symmetrically about

the apogee, while the use of continuous control forces some amount of control to be
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applied near perigee, increasing the control requirement.

It must be noted that ∆v comparison is not quite appropriate as low-thrust propulsion

typically is much more efficient in terms of fuel requirement compared to high-thrust

propulsion.

Conclusions

This paper presents a novel Lyapunov function-based control law for orbit transfer

problems. This control law, motivated by developments in the field of attitude control,

is shown to be capable of high performance on a variety of examples, including LEO-

MEO transfers and formation reconfiguration in low- and high-eccentricity orbits.

For transfers involving large changes in orbit radii, the control law is implemented

to track a reference analytical solution. For low-eccentricity reconfigurations, the

control law is further simplified by neglecting the differential J2 acceleration terms in

the control design model and by the use of mean elements. An algorithm has been

developed, that yields the position at which initiating the control results in the lowest

total control requirement for a given control law. This algorithm is applicable to the

most general reconfiguration problem. This enables the use of the same set of gains

for a whole class of reconfigurations.
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Appendix A: Proof of Asymptotic Stability

It has already been shown in Eqs. (10) and (15), that V (z) > 0 and V̇ (z) ≤ 0

∀z ∈ Z\{zeq}. The set E =
{
z ∈ Z|V̇ (z) = 0

}
contains the points where ∆β1 =

∆′ωh = ∆ṙ = 0. If M is the largest invariant set in E, it needs to be shown that the

region M contains only the origin, i.e., when ∆β1 = ∆′ωh = ∆ṙ = 0, all other error
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variables are zero.

By substituting the radial control from Eq. (14a) in Eq. (1), the equation ∆r̈ +

c1∆ṙ + c2∆r = 0 is obtained. For c1, c2 > 0, the only equilibrium for this system is

∆r = ∆ṙ = 0; consequently, when ṙ = ṙdes, r = rdes.

Since ∆′ωh = 0, it follows that ωh = ωdesh
. Substituting (14c) in the expression for

ωr, ωr = ωdesr
, which, along with the osculation constraint, implies ∆′ω = 0.

The closed-loop system obtained upon substituting Eq. (14b) in the iθ component

of Eq. (1) results in ∆β3 = 0, given that ∆′ωh = 0. Since ∆β1 is also zero, it is

clear that ∆β̇1 = ∆β̇3 = 0. Since ∆ωT ∆̃β = ∆′ωT ∆̃β = 0, it follows that ∆β̇0 = 0.

Finally, since ∆βT∆β = 1, differentiating the expression leads to the conclusion that

∆β̇2 = 0. Therefore, ∆β̇ = 0 = ∆ω.

Only one of ∆β0 and ∆β2 needs to be determined; the value of the other is fixed by

the Euler parameter constraint. By simplifying Eq. (8), the following is obtained:

∆ω =





ωr

0

ωh





−





(∆β2
0 − ∆β2

2)ωdesr
− ∆β0∆β2ωdesh

0

∆β0∆β2ωdesr
+ (∆β2

0 − ∆β2
2)ωdesh





= 0 (31)

Since ωdes = ω, and ∆β2
0 = 1 − ∆β2

2 , this yields the following system of equations in

two variables:


 ωdesr

ωdesh

ωdesh
−ωdesr








2∆β2
2

2∆β1∆β2



 = 0

For elliptic or hyperbolic orbits, −ω2
desr

−ω2
desh

< 0. Hence ∆β2 = 0, and consequently,

∆β0 = 1 as it has already been shown that ∆β1 and ∆β3 are zero. Therefore, it is

clear that the set M contains only the origin. Hence any trajectory starting in Z,

will asymptotically approach M , i.e, the origin as t → ∞. The equilibrium is thus

proven to be asymptotically stable and the controller drives the current trajectory to

the desired trajectory asymptotically. Furthermore, since V → ∞ as |z| → ∞, the
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equilibrium is also globally stable.

It is interesting to note that ωdesh
= 0 for parabolic orbits, and V̇ could be zero

without ∆β2 and ∆β0 necessarily being zero (other error quantities are zero even in

this case). As a consequence, the controller derived is not able to transfer from an

elliptic orbit to a parabolic orbit, except for specific cases. An analogous conclusion

is drawn in Ref. 2.

Appendix B: Closed-Loop Stability if Modeled Dis-

turbances are Ignored

If the modeled disturbances are ignored in the control law, then the closed loop system

has the following dynamics:

∆r̈ + c1∆ṙ + c2∆r = dr − ddesr
(32a)

∆′ω̇h + c3∆
′ωh + c4∆β3 =

dθ

r
− ddesθ

rdes

(32b)

∆′ωr + c5∆β1 =
dh

ωhr
− ddesh

ωdesh
rdes

(32c)

It is known that in the absence of disturbances, the solutions to Eqs. (32) approach

zero as t → ∞. In the case where the modeled disturbance is the J2 perturbation,

the expressions on the right hand side are bounded by the maximum J2 perturbation

on the initial orbit and the minimum J2 perturbation on the target orbit, or vice

versa. In either case, from the Gronwall-Bellman Inequality,24 the solutions to the

above equations remain bounded within a region around zero; the limits of these

bounds are proportional to J2. To further simplify analysis, the radial error equation

is considered, with the assumption that the errors in the EP equations are of the

same order upon scaling by the radial distance. The “differential disturbance” acting

on the system when the spacecraft is very close to its target orbit, is evaluated as

dr − ddesr
≈ ∇dT

r

∣∣
des

(x − xdes), where dr is given in Eq. (5), and x are the states

in the closed-loop system. The evaluation of x − xdes requires the evaluation of the

direct EP differences, denoted by ∆′β, which have the following relation with the
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error EPs:

∆′β = β − βdes =




βdes0 −βdes1 −βdes2 −βdes3

βdes1 βdes0 −βdes3 βdes2

βdes2 βdes3 βdes0 −βdes1

βdes3 −βdes2 βdes1 βdes0








∆β0 − 1

∆β1

∆β2

∆β3





(33)

Using the above relation to compute the relative EPs from the differential EPs, a

small change in the (i, j)th entry of the direction cosine matrix C is given by:

∆C13 = 2 [Cdes13 (∆β0 − 1) − Cdes33∆β2 + Cdes23∆β3] (34a)

∆C23 = 2 [Cdes23 (∆β0 − 1) + Cdes33∆β1 − Cdes13∆β3] (34b)

The radial equation reduces to:

∆r̈ + c1∆ṙ + c2∆r = f1∆r + f2∆β3 + f3∆β2 (35)

where (setting k = −3J2µR2
e/2),

f1 = − 4k

r5
des

(1 − 3C2
des13

), f2 = −12k

r4
des

Cdes13Cdes23 , f3 =
12k

r4
des

Cdes13Cdes33

Equations (32b) and (32c) can also be reduced likewise and the final result is a

system of damped, multi-degree of freedom linear differential equations with periodic

coefficients. The stability of this system can be analyzed using Floquet theory.25

Consequently, though the controller stabilizes the system to a region around the

equilibrium, the gains c1...5 have to take positive values, but cannot have arbitrarily

small magnitudes. Ignoring cross coupling terms, the equation can be expressed as

ẍ + c1ẋ + c2x = A sin2(nt)x, where A = 8k/a5. As an extreme case, a LEO reference

is considered (where J2 effects are maximum), so that Re/a ≈ 1. Choosing gains

using the methodology outlined in the paper, c2 = n2 and c1 = 2n. By changing

the independent variable from t to τ = nt, the equation reduces to x′′ + 2x′ + x =

12J2 sin2 τ x, which is the damped Mathieu equation. Analysis of this equation in

Ref. 25 shows that it is asymptotically stable for this order of magnitude of damping
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value and parametric excitation amplitude. Thus the control law is effective in orbital

transfer even if J2 terms are ignored.
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Figure 1 Relative Radius and Initial Phase Angle

Figure 2 Orbital Transfer from LEO Parking to MEO Circular
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Figure 3 Control Profile for Orbital Transfer
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Figure 4 TCR for Orbital Transfer
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