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Abstract

The analysis of satellite rendezvous in planetary orbits typically derives control laws in
a frame rotating with the target satellite. However, because the control law is ultimately
required in the chaser satellite’s frame, knowledge of the chaser satellite’s motion with
respect to the planet may be required to correctly transform the control laws. The
transformation may also result in suboptimal or infeasible control laws if control compo-
nents have different relative weights. A new approach is described that poses the rendez-
vous problem in the chaser satellite’s frame directly. A nonlinear transformation between
the chaser and target frames, in terms of relative position and velocity variables is derived.
This transformation is used to formulate and solve the second-order nonlinear rendezvous
problem using optimal power-limited propulsion analytically. Thus, a framework is devel-
oped that can be used to solve the orbital transfer problem. The efficacy of the derived
control algorithm is demonstrated by means of an example.

Introduction

Satellite rendezvous and formation flight have been topics of great interest over
the past decade, although historical interest in the problem has been present since
the use of Hill’s equations [1] for rendezvous near a circular orbit, by Clohessy and
Wiltshire [2]. Analysis of both rendezvous and formation flight is similar in the
sense that both require the understanding of the dynamics of relative motion, and
derivation of control laws that can be used for docking, or formation establishment
and reconfiguration.

Relative motion equations model the dynamics of one satellite (usually desig-
nated as the chaser or deputy), with respect to another satellite (designated as the
target or chief), in a frame of reference affixed to the target satellite and rotating
with satellite in its orbit. Studies on satellite rendezvous using optimal control
typically penalize a quadratic cost function based on control effort [3–6]. However,
the control variables in these equations are expressed in the frame rotating with the
target satellite in its orbit. The control obtained from the analysis of these equations
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has to be transformed into the chaser’s rotating frame to obtain appropriate values
for physical application. To address this issue, this work poses the rendezvous
problem using control variables expressed in the target’s rotating frame directly.
Although the resulting problem is a nonlinear optimal control problem, the
framework enables the assessment of the effects of introducing relative frame
transformations.

The article is organized as follows. The rendezvous equations are first pre-
sented, and expressions for finite rotations between chaser and target frames of
reference are developed purely in terms of the relative position and velocity
variables. These are then used to formulate new rendezvous equations with control
effort expressed directly in the target’s rotating frame. Perturbation methods are
used to solve these equations including nonlinearities through the second order. By
means of an example, the effects of using rotating frames on nonlinearity are
presented.

Problem Formulation

Consider a rotating, Cartesian Local-Vertical Local-Horizontal (LVLH) frame
of a satellite, with basis vectors {ir i� ih}. The vector ir lies along the radius vector
from the Earth’s center to the satellite, ih coinciding with the normal to the plane
defined by the position and velocity vectors of the satellite, and i� � ih � ir. In the
rotating frame, the position and velocity of the target satellite are given by

r � { r 0 0 }� (1a)

v � { �r �� 0 }� (1b)

The quantities r, vr, and v� are obtained from the principles of two-body motion
[7], as

r �
p

(1 � e cos f)
(2a)

�r � ��

p
e sin f (2b)

�� � ��

p
(1 � e cos f) (2c)

where p � a(1 � e2).
Let the relative position vector in the rotating frame be defined as | �

� � � � } � . The nonlinear relative motions can be obtained by twice differen-
tiating the relative position in the rotating Cartesian LVLH frame, and equating the
result to the sum of the differential gravity between the chaser and the target
expressed in the LVLH frame, and external control input. The resulting nonlinear
rendezvous equations are given by

�̈ 	 2�̇�̇ 	 �̇2� 	 �̈� � 	
�(r � �)

[(r � �)2 � �2 � �2]3/2 �
�

r2 � u� (3a)
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�̈ � 2�̇�̇ 	 �̇2� 	 �̈� � 	
��

[(r � �)2 � �2 � �2]3/2 � u� (3b)

�̈ � 	
��

[(r � �)2 � �2 � �2]3/2 � u� (3c)

The equations for rendezvous can be written in normalized form, where the
relative position is scaled by r. Furthermore, f is chosen as the independent
variable, through the relation ḟ � ��/r. These two steps result in position vector �
and velocity vector ��, which are given by

� �
1

r
| (4a)

�� �
1

��
|̇ 	 � �r

��r
�| (4b)

Using the foregoing normalization, the nonlinear equations of motion can then
be written as [8]:

x� � 2y� �
1 � x

(1 � e cos f ) �1 	
1

d3� �
ur

(1 � e cos f )3 (5a)

y� � 	2x� �
y

(1 � e cos f ) �1 	
1

d3� �
u�

(1 � e cos f )3 (5b)

z� � 	
z

(1 � e cos f ) �e cos f �
1

d3� �
uh

(1 � e cos f )3 (5c)

where d � [(1 � x)2 � y2 � z2]1/2, and � ur u� uh } � � � u� u� u� } � /(�/p2).
Equation 5 can be rewritten as the nonlinear system

x� � g( f, x) � B( f)u (6)

where

x � { x y z x� y� z�}� (7a)

u � { ur u� uh }� (7b)

B( f) �
1

(1 � e cos f)3 ��3

�3
� (7c)

When the relative position is small compared with the radial distance of the
target satellite from the gravitational center, that is, �x� �� 1, the nonlinear function
g( f, x) can be expanded as

g( f, x) � A( f)x � g̃( f, x) (8)

where
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A( f) � � �3 13

Ã( f ) 	 �,

Ã( f ) � � 3/(1 � e cos f ) 0 0
0 0 0
0 0 	1

�, 	 � � 0 2 0
	2 0 0
0 0 0

�
In equation 8, g̃( f, x) is composed of Legendre polynomials of second and

higher order [5, 9, 10]. The linear form of the equations, where higher-order terms
are neglected, are known as the Tschauner–Hempel (TH) equations [11], and have
been used extensively to model the rendezvous problem with an eccentric reference
or target orbit [4, 6, 12, 13]. The case e � 0, corresponding to a target in a circular
orbit, results in the Clohessy–Wiltshire [2] model for relative motion. The circular
case is not discussed here because a considerable amount of literature has been
devoted to rendezvous near a circular orbit [14–16].

Although the linear form of equation 6 has been used extensively in the
literature for control design, it does not address the fact that even if all the relative
states are assumed observable, the control is expressed in the target’s LVLH frame.
Consequently, from the perspective of implementing a decentralized architecture,
the control law may only be of limited use to the chaser because the chaser satellite
requires the control law in its own LVLH frame.

To further explain this point, let the control vector in the chaser’s LVLH frame
be denoted by û, and Ctarget and Cchaser denote the direction cosine matrices that
transform a vector in the Earth-centered inertial frame to the LVLH frames of the
target and chaser, respectively. Then, the relative direction cosine matrix Crel, that
transforms a vector in the chaser’s frame to the target’s frame, is given by

Crel � CtargetCchaser
� (9)

The control in the target’s LVLH frame is then given by

u � Crelû (10)

The relative direction cosine matrix Crel can be obtained as a function of the
relative states, in several ways. One method is to express the direction cosine
matrices in equations 9 and 10 using suitable sets of parameters [17]. A natural
choice is the 3–1-3 Euler angle set comprising 	, i, and � � 
 � f, of the satellite’s
orbit, because these elements are part of the satellite’s classical orbital element set.
If it is assumed that the orbital elements of the chaser are not very different from
those of the target, then the former can be written in terms of the latter, using
Taylor series expansions. For example, one may obtain a set of differential orbital
elements in terms of the relative states [18] as

�i � sin � z � cos � z� (11a)

�	 � 	
cos �

sin i
z �

sin �

sin i
z� (11b)

�� � y � cot i cos� z 	 cot i sin � z� (11c)

However, equations 11 can only be used to develop Crel when the differences
between the target and chaser’s elements are small. Second-order transformations
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[8] can be made use of, although their use is also limited by the fact that these are
truncated series. Furthermore, no known formulae exist in the literature, for
expansions to arbitrary order.

In reference [19], an approach was described in which relative LVLH states can
be calculated from relative inertial states and the inertial states of the target
satellite. Using key results from that work, the relative direction cosine matrix Crel

can be obtained in terms of the relative LVLH states. The full development of Crel

is included as an appendix. It can be shown that Crel' Crel(x); that is, the relative
direction cosine matrix is purely a function of the normalized relative position and
velocity. The use of equation 10 and equation 8 in equation 6 results in a system
of equations of the form

x� � A( f)x � g̃( f, x) � B̃( f, x)û (12)

where B̃
 f, x) � B( f) Crel(x).
The optimal control for minimum-fuel, power-limited rendezvous is solved by

minimizing the cost function

� �
1

2�
0

T

û�Rû dt (13)

where R � diag(R1, R2, R3) � 0. The use of weights R1,2,3 allows the inclusion
of preferential firing algorithms because of unavailability of radial thrust [3],
geometric or weight restrictions [20], or for the avoidance of plume impinge-
ment. The cost function for a control law in the target’s frame, will in general
be different from the cost function for a control in the chaser’s frame, and
consequently, the control law obtained from using a modified cost will also in
general, be different. If the weights on the controls are identical, then R1 �
R2 � R3 � R, and

� �
R

2�
0

T

û�û dt �
R

2�
0

T

u�CrelCrel
� u dt �

R

2�
0

T

u�u dt (14)

In fact, the fuel cost is the same irrespective of the frame in which the control
is expressed, because

fuel ��
0

T

u�u dt � �
0

T

û�û dt (15)

The optimal control for equation 12, is solved for the cost function

� �
1

2�
f0

fT û�Rû
(1 � e cos f )2 df (16)

where f0 and fT are the true anomaly of the target at epoch and final time T, and
where a factor of (1 � e cos f)2 is introduced in the denominator of the cost
function, when changing the independent variable from time (or mean anomaly) to
true anomaly [3, 4, 6]. For ease of notation, let R̃
 f  � R/(1 � e cos f)2.
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Equations for the states, x � �x y z x� y� z�} � , and costates, � �
��x �y �z �x� �y� �z� } �, can be obtained from the Hamiltonian of the system,
and are given as [21]

û � 	 R̃�1( f )B̃�( f, x)� (17a)

x� � A( f )x � g̃( f, x) 	 B̃( f, x)R̃�1( f )B̃�( f, x)� (17b)

�� � 	A�( f )� 	 � 

x
g̃( f, x)��

� � ��B̃( f, x)R̃�1( f )� 

x
B̃( f, x)��

� (17c)

x( f0) � x0, x( fT) � xT (17d)

Equation 17 is a 12th-order system of nonlinear equations, with six initial and
six final conditions on the states. It is worth noting that for satellite rendezvous,
xT � { 0 0 0 0 0 0 }� , but the formulae derived in this article are valid for
any value of desired final state vector. Therefore, the derivation is not limited to
rendezvous, but can also be applied to formation reconfiguration and establish-
ment. Furthermore, while the thrust-limited rendezvous problem is beyond the
scope of the article, the analysis presented here still holds for the development of
the costate equations that are used in conjunction with Prontryagin’s Minimum
Principle [21] to address the thrust-limited rendezvous problem.

Equation 17 can also be used to describe the nonlinear orbital transfer problem
with power-limited propulsion, in a coordinate system rotating with the target. The
optimal control can be determined if � vector is known at all instants of time, and
the evolution of � with time requires that the initial value �0 be determined. The
initial costate vectors can be obtained by numerically iterative procedures such as
shooting methods; however, depending on the length of the simulation, these
methods can require large computation times. Furthermore, these methods require
accurate initial guesses. Recent work on the optimal control of nonlinear systems
uses generating functions [15] to obtain �0. The formulation used in this article is
in the same category as the Tschauner–Hempel equations, in that the system is
nonautonomous. The additional complexity involved with analyzing nonautono-
mous systems cannot be avoided unless the target orbit eccentricity is assumed
zero.

Optimal Control Problem in the Chaser’s Frame

In this section, the system specified by equation 17 is simplified by utilizing the
fact that the relative motion is small compared with the size of the target’s orbit.
This approach also enables a comparison of the relative magnitudes of the
nonlinear terms. As shown in the appendix, the relative direction cosine matrix can
be written as a series of matrices whose entries are polynomials in the states. To
the first order

Crel � � 1 	y 	 z
y 1 	 z�
z z� 1

� � �3 � D � (x) (18)

where D � (x) is a skew-symmetric matrix.
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Upon substituting equation 18 in equation 17, a set of approximate equations for
the states and costates are obtained as

x� � A( f )x 	 B( f )R̃�1( f )B�( f )�

� g̃( f, x) 	 B( f )[D � (x)R̃�1( f ) 	 R̃�1( f )D � (x)]� (19a)

�� � 	A�( f )� 	 � 

x
g̃(x)��

� 	 ��B( f )� d

dx
D � (x)�R̃�1( f )B�( f )� (19b)

In equation 19b, D � dD � (x)/dx is a third-order tensor of dimension 6 � 3 �
3, whose nonzero entries are given by

D212 � D313 � D623 � 	1, D221 � D331 � D632 � 1 (20)

Equation 19 is a system of ordinary differential equations in states and costates,
with second-order nonlinearities introduced by the relative frame between the
chaser and target’s respective LVLH frames. The introduction of second-or
higher-order terms in equation 11 would result in terms through the third order in
equation 19. Therefore, the linear approximation in equation 11 is considered valid.

As shown in reference [10], the nonlinear function g̃( f, x) represents nonlin-
earities in the differential gravity field of second and higher order. This function
may be written as

g̃( f, x) � 	
k�3

� 
�1kk

(1 � e cos f )(y2 � z2) 
�kPk(x/�) �
0
0
0
0
y
z
� � �k 	 1Pk 	 1(x/�) �

0
0
0

y2 � z2

	xy
	xz

�
(21)

where � � ���.
Because the approximation of Crel introduces nonlinearities of the second order,

the function g̃( f, x) is also restricted to the second order

g̃( f, x) �
3

2

1

(1 � e cos f )
�0 0 0 (y2 � z2 	 2x2) 2xy 2xz�� (22)

The implication of the introduction of second-order terms in the equations is that
whenever relative distance cannot be assumed small in comparison with the
distance of the target from the planet, the relative frame kinematics must also be
taken into account in the formulation.

Perturbation Approach to the Solution of the Optimal Control Problem

A solution based on perturbation techniques can now be developed for equation
19, with the inclusion of quadratic terms because of differential gravity, given by
equation 21. The state and costate equations are rewritten as

� x�
�� � � �A( f ) 	B( f )R̃�1( f )B�( f )

�6 	 A�( f ) � �x
�� � d( f, x, �) (23)
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where d(f, x, �) is the vector composed of terms of second order in x and �, given
by

d( f, x, �) �





 0

0
0

3(z2 � y2 	 2x2)

2(1 � e cos f)
� � 1

R2
	

1

R1
� y�y�

(1 � e cos f)4 	 � 1

R1
	

1

R3
� z�z�

(1 � e cos f)4

3xy

(1 � e cos f)
� � 1

R2
	

1

R1
� y�x�

(1 � e cos f)4 � � 1

R3
	

1

R2
� z��z�

(1 � e cos f)4

3xz

(1 � e cos f)
� � 1

R3
	

1

R2
� z��y�

(1 � e cos f)4 	 � 1

R1
	

1

R3
� z�x�

(1 � e cos f)4

	
3(y�y� � z�z� 	 2x�x�)

(1 � e cos f)

	
3(x�y� � y�x�)

(1 � e cos f)
	 � 1

R2
	

1

R1
� �x��y�

(1 � e cos f)4

	
3(x�z� � z�x�)

(1 � e cos f)
� � 1

R1
	

1

R3
� �x��z�

(1 � e cos f)4

0
0

	 � 1

R3
	

1

R2
� �y��z�

(1 � e cos f)4






(24)
Reference [5] shows that the kth-order nonlinear polynomial in the expansion of

the differential gravity is �
�0
k/�k) where �0 represents the relative orbit size, and

can be equal to the initial relative distance between the target and chaser.
Consequently, the second-order nonlinearity is approximately (�0/p) times smaller
than the linear term, and it is therefore assumed that the solution to equation 23 can
be written as a perturbation to a given reference solution [22]

x � xref � x̃ (25a)

� � �ref � �̃ (25b)

where xref and �ref are the solutions to the linear problem. An analytical solution to
the linear problem has been derived in reference [6], and is of the form

�xref( f )
�ref( f )� � �( f, f0) �xref( f0)

�ref( f0)� (26)

�( f, f0) � ��xx( f, f0) �x�( f, f0)
�6 ���( f, f0)�

� �L( f )M( f0) 	L( f )[N( f ) 	 N( f0)]L
�( f0)

�6 M�( f )L�( f0) � (27)
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The matrices L( f ), M( f ), and N(f) are available as appendices in reference [6]
and are not reproduced here for the sake of brevity.

Upon substituting equation 25 in equation 23, and isolating the terms of second
order, a set of equations are obtained as

� x̃�

�̃�� � �A( f ) 	 B( f ) R̃�1( f )B�( f )
�6 	 A�( f ) � � x̃

�̃� � d( f, xref( f ), �ref( f )) (28)

The solution to equation 28 is then given by

� x̃( f )
�̃( f )� � �( f, f0) � x̃( f0)

�̃( f0)
� � �

f0

f

�( f, s)d(s, xref(s), �ref(s))ds (29)

However, from the initial and final conditions specified in equation 17,

x( f0) � x0f x̃( f0) � 0 (30a)

x( fT) � xTf x̃( fT) � 0 (30b)

It follows that the initial value of �, that can be used to solve the optimal control
problem, is given by

�( f0) � �x�
	1( fT, f0){xT 	 �xx( fT, f0)x0}

	 �x�
	1( fT, f0)�

f0

fT

[�xx( fT, s)�x�( fT, s)]d(s, xref(s), �ref(s))ds (31)

In terms of the known matrices L( f ), M( f ), and N( f ), the foregoing equation
can be rewritten as

�( f0) � 	M�( f0)[N( fT) 	 N( f0)]
�1{[M( fT)xT 	 M( f0)x0] 	 �

f0

fT

M(s)dx(s)ds

� �
f0

fT

[N( fT) 	 N(s)]L�(s)d�(s)ds} (32)

where dx(s) and d�(s) are the first six and last six elements of the vector d(s, xref(s)),
respectively. Although an analytical solution to the quadratures in equation 32 is
not known, they can be evaluated easily using numerical integration or by spline
approximations. Once equation 32 is evaluated, a feedback control from relative
states x at true anomaly f, to rendezvous at states xT, at true anomaly fT, can be
obtained by substituting �(f0) into equation 29 and then calculating the optimal
control using equation 17a. In terms of the matrices L(f), M(f), and N( f ), the
feedback control law can be written as

û(x, xT, f, fT) � R̃�1( f )Crel(x)�B̃�( f )M�( f )[N( fT) 	 N( f )]�1

� �[M( fT)xT 	 M( f )x] 	 �
f

fT

M(s)dx(s)ds � �
f

fT

[N( fT) 	 N(s)]L�(s)d�(s)ds� (33)
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Numerical Simulations

The use of the control law presented in equation 33 is demonstrated on an
example rendezvous mission, where the chaser satellite is initially placed in a
periodic relative orbit around the target. The orbital elements of the target satellite
are chosen as

a � 8285.17 km, e � 0.2, i � 50�, 	 � 36�, 
 � 24�, M0 � 4�

(34)

The chaser satellite has the following initial states, chosen arbitrarily, but
constrained to result in a periodic and bounded relative orbit in the absence of
control

�0 � 49.51 km, �0 � 63.97 km, �0 � 36.70 km
(35)

�̇0 � 0.044 km/s, �̇0 � 	 0.116 km/s, �̇0 � 0.013 km/s

Upon scaling the relative position variables and relative velocity variables using
equation 4, the initial state vector is given by

x0 � {7.46 9.64 5.53 5.00 	13.81 1.41}� � 10�3, f0 � 0.1068rad

(36)

Rendezvous with the target is given by the conditions

xT � {0 0 0 0 0 0}�, fT � 3.6257rad (37)

The value of fT chosen in the foregoing equation corresponds to a mean anomaly
of the target in its orbit given by MT � 220°, or approximately 75 min from epoch.

Rendezvous is desired without the use of radial thrust in the chaser’s own LVLH
frame. To obtain such a control law, the weights on the control are chosen as R1 �
1 � 106, R2 � 1, R3 � 1.

Semi-Analytical Solution for the Two-Point Boundary Value Problem

As shown in previous sections, the evaluation of �0 allows the calculation of �
and consequently, the optimal control. A two-point boundary value problem for the
second order system, given by equation 23, is solved using numerical shooting
methods, for x0 and xT given by equations 36 and 37, respectively.

Using the linear part of equation 32 results in �0linear that is obtained
analytically as

�0linear � { 70.45 	14.86 2.89 36.91 25.97 0.00 }� � 10�3 (38)

This solution can be improved upon by adding the second order term in equation
32, upon evaluating the integral numerically. This results in �0nonlinear, given as

�0nonlinear � { 71.01 	14.83 3.14 37.33 26.45 0.23 }� � 10�3 (39)

The true costate vector is found by numerically solving the two-point
boundary value problem for the nonlinear system, using �0linear as an initial
guess, and is given by
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�0 � { 71.03 	14.83 3.15 37.34 26.47 0.24 }� � 10�3 (40)

This demonstrates that by using closed-form solutions and evaluating quadra-
tures, equation 32 is an excellent approximation to the solution of the nonlinear
rendezvous problem posed in this article.

Rendezvous Using Feedback Control

The control law given by equation 33 is now used to perform rendezvous given
by conditions equations 36 and 37. Although the control is obtained by an
approximate solution to approximate equations, it is applied to the nonlinear
system given by equation 5. Figure 1 depicts the relative trajectory (solid line)
starting from initial condition x0 at f0, to rendezvous state xT at fT. The initial and
final positions are marked by a circle and square, respectively, and the dotted trajectory
represents the bounded relative orbit corresponding to initial conditions x0.

It should be noted that the second order form of the rendezvous equations, given
by equation 23, can be written without formulating the control in the chaser frame,
by ignoring terms of the second order dependent on 1/R1, 1/R2, and 1/R3, in
equation 24. Therefore, two control laws are obtained: one that minimizes the cost
function 
1/2)�

f0

fTu� R̃udf � (1/2)�
f0

fTû � Crel
� R̃Crelû df, and one that minimizes


1/2)�
f0

fTû � R̃û df. The first control law is denoted by û1, and the second control is

denoted by û2, where û1 ignores the effects of the frame differences between chaser
and target satellites. The control history using the two control laws is shown in Fig. 2.
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FIG. 1. Relative Trajectory.
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The solid line depicts the control history if the matrix Crel is ignored in the
control formulation, resulting in control law û1, that is obtained by transforming the
control law from the target LVLH frame. The broken line depicts the control law
obtained by optimizing the cost function accounting for relative frame differences.
The radial control in the chaser frame from û2 is near-zero, whereas the radial
control by using û1 is not correctly minimized. It is also observed that as the chaser
satellite approaches the target in its orbit, the difference between the two control
laws is reduced, because of the decrease in nonlinearity introduced by frame
difference. The magnitude of the control in the along-track and out-of-plane are
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comparable; the difference in their respective values arises due the fact that in the
new control law presented in this article, they have to compensate for a lack of
availability of control in the radial direction.

To analyze the difference between control laws resulting from the minimization
of different cost functions, the radial component of both control laws in their
respective chaser frames are set to zero, translated back into the target frame, and
applied to equation 5. Although the difference in resulting relative position can be
several hundred meters, it is too small to depict on the scale of Fig. 1. Therefore,
these trajectories are shown as deviations from a reference trajectory obtained by
applying a linear control law (i.e., without any second-order terms), in Fig. 3. In
this figure, the solid line depicts the trajectory obtained by using û1, after forcing
û1r � 0. the broken line depicts the trajectory obtained by using û2, where the
radial control is very near zero; in fact, forcing û2r � 0 causes insignificant change
in the trajectory. The application of both nonlinear feedback control laws causes
deviation from the linear reference trajectory, and the deviation can be as large as
800 m. Furthermore, a difference is noted in the relative trajectories obtained using
control laws where radial thrust has been penalized, and where radial thrust has
been forced to zero. Although the along track displacement is as large as 70 km in
this example, the noted deviation from trajectory is large enough to have impli-
cations on the guidance law used in rendezvous. It is worth noting that even though
the radial control is not used, the problem is still controllable in the linear sense [3].
However, the along-track control history will differ, to compensate for the lack of
available radial control.
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Conclusions

In this article, the problem of rendezvous has been analyzed, with control law
derivation directly in the frame of the chaser satellite. A formulation for the relative
direction cosine matrix between chaser and target frames, in terms of relative
states, has been derived, and it has been shown that using this matrix introduces a
state-dependent control influence matrix in the rendezvous equations.

From a general formulation for the nonlinearities in the rendezvous equations,
polynomial series have been constructed, which allows for the use of perturbation
theory as a solution methodology for optimal orbital transfer. A feedback control
law has been derived that accounts for second-order nonlinearities in the rendez-
vous equations. It has been shown that introduction of relative frame effects is
particularly useful when some components of the control thrust are penalized to
avoid their use. This nonlinear feedback law is also useful for rendezvous missions
where the relative distances are large. Furthermore, the results obtained are valid
for elliptic orbits with no limitation on eccentricity. While in some cases, the
control law obtained using the modified formulation is not very different from the
conventional approach, the resulting trajectories can be different. The formulation
developed in the article also serves as a framework for the orbital transfer problem
to obtain the optimal control in a frame rotating with the target satellite in its orbit.

Appendix: Development of the Relative Direction Cosine Matrix

The relative direction cosine matrix Crel is obtained in terms of the states
�x y z x� y� z�} � . The direction cosine matrix Ctarget can be obtained from
the inertial radius and velocity vectors, r and v, respectively. By using the angular
momentum vector h � r � v, and the vector c orthogonal to r and h, such that c �
h � r, the matrix Ctarget is given by [19]

Ctarget � � r
�r �

c
�c �

h
�h � �

�

(41)

Similarly, the direction cosine matrix for the chaser’s LVLH frame can be
obtained from the inertial position, r � �r, and velocity, v � �v, of the chaser
satellite in the inertial frame, where �r and �v are the relative position and velocity,
respectively, of the chaser with respect to the target in the inertial frame.

Cchaser � � r � �r
�r � �r �

c � �c
�c � �c �

h � �h
�h � �h � �

�

(42)

It follows that the relative direction cosine matrix can be written as

Crel � � r
�r �

c
�c �

h
�h � �

� � r � �r
�r � �r �

c � �c
�c � �c �

h � �h
�h � �h � � (43)

� 

r�(r � �r)

�r � �r � �r �
r�(c � �c)

�r � �c � �c �
r�(h � �h)

�r � �h � �h �
c�(r � �r)

�c � �r � �r �
c�(c � �c)

�c � �c � �c �
c�(h � �h)

�c � �h � �h �
h�(r � �r)

�h � �r � �r �
h�(c � �c)

�h � �c � �c �
h�(h � �h)

�h � �h � �h �
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The vectors �r and �v are the relative position and velocity, respectively, of the
chaser with respect to the target in the inertial frame. These can by obtained from
� and �’, the scaled states in the rotating frame, as

�r � Ctarget
� (r�) (44a)

�v � �d

dt
Ctarget

� �(r�) � Ctarget
� �dr

dt
� � r

d�

dt�
� �d

dt
Ctarget

� �
r�) � Ctarget
� (�r� � ����) (44b)

The rate of change of the target’s direction cosine matrix in equation 44b can be
obtained by differentiating equation 41 with respect to time, as [19]

d

dt
Ctarget

� � �� v
�r � 	

(v�r)r
�r � 3 � � ċ

�c � 	
(ċ�c)c

�c � 3 �0� (45)

where ċ � h � v � (r � v) � v. It should be noted that because the angular
momentum vector of a satellite in a two body orbit is a constant, its time derivative,
given by the third column of the matrix in equation 45 is zero. Additionally, it is
easy to show for the two-body problem that

�h � � r2ḟ � r�� (46a)

�c � � �h � �r � � r2�� (46b)

r�v �
1

2

d

dt
r�r � r�r (46c)

c�v � 	 r�ċ � v�(h � r) � r2��
2 (46d)

c�ċ � c�(h � v) � r3��
2�r (46e)

r�c � r� h � h� c � h�v � v�ċ � h�ċ � 0 (46f)

Using equation 44 in equation 43, it can be shown that

Crel � 

( �r � 2 � r��r)

�r � �r � �r �
r��c

�r � �c � �c �
r��h

�r � �h � �h �
c��r

�c � �r � �r �
( �c � 2 � c��c)

�c � �c � �c �
c��h

�c � �h � �h �
h��r

�h � �r � �r �
h��c

�h � �c � �c �
( �h � 2 � h��h)

�h � �h � �h �
 (47)

To obtain the elements of Crel in terms of the relative states, it is first necessary
to define some preliminary quantities. From equations 44 and 45, it is easy to show
that

�r � rxr̂ � ryĉ � rzĥ (48a)
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�� � (�rx 	 ��y � ��x�)r̂ � (��x � �ry � ��y�)ĉ � (�rz � ��z�)ĥ

(48b)

where r̂ � r/ � r̂ � , ĉ � c/ �c � , and ĥ � h/ �h � .
The numerators of the elements in the first column of equation 47 can be

resolved by using equations 48a and 46, as

r��r � r2x (49a)

c��r � r3��y (49b)

h��r � r2��z (49c)

The numerators of the elements in the third column of equation 47 are then
resolved by noting that

h � r � v

f �h � �r � v � r � �v � �r � �v (50)

where,

�r � v � 	 r��z r̂ � r�rz ĉ � r(��x 	 �ry)ĥ (51a)

r � �v � 	 r(�rz � ��z�)ĉ � r(��x � �ry � ��y�)ĥ (51b)

�r � �v � r��[	xzr̂ 	 yzĉ � (x2 � y2)ĥ]

� r��[(yz� 	 zy�)r̂ � (zx� 	 xz�)ĉ � (xy� 	 yx�)ĥ] (51c)

Therefore, the quantity �h is given in terms of relative states by

�h � r���( 	 z 	 xz � yz� 	 zy�)r̂ � ( 	 z� 	 yz � zx� 	 xz�)ĉ

� (2x � y� � x2 � y2 � xy� 	 yx�)ĥ� (52)

and

r��h � r2��( 	 z 	 xz � yz� 	 zy�) (53a)

c��h � r3��
2( 	 z� 	 yz � zx� 	 xz�) (53b)

h��h � r2��
2(2x � y� � x2 � y2 � xy� 	 yx�) (53c)

Calculating the elements of the second column of the relative direction cosine
matrix requires the vector �c in terms of the relative states. This vector is given by

�c � 	r2���y � x(2y 	 x�) � (xx� � yy� � zz�) � (y 	 x�)(x2 � y2 � z2)

� x(xx� � yy� � zz�)�r̂ � r2���3x � y� � x(2x � y�) � (xy� 	 yx�)

� (x2 � y2 � z2) � (x � y�) (x2 � y2 � z2) 	 y(xx� � yy� � zz�)�ĉ
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� r2���z� � 2xz� 	 zx� � z�(x2 � y2 � z2) 	 z(xx� � yy� � zz�)�ĥ (54)

r��c � 	r3���y � x(2y 	 x�) � (xx� � yy� � zz�)

� (y 	 x�)(x2 � y2 � z2) � x(xx� � yy� � zz�)� (55a)

c��c � r4��
2�3x � y� � x(2x � y�) � (xy� 	 yx�) � (x2 � y2 � z2)

� (x � y�)(x2 � y2 � z2) 	 y(xx� � yy� � zz�)� (55b)

h��c � r3��
2�z� � 2xz� 	 zx� � z�(x2 � y2 � z2) 	 y(xx� � yy� � zz�)� (55c)

The denominators of the terms in equation 43 can be written in terms of the
states. Because the vectors r, c, h form an orthogonal basis for the state space

�r �
r��r
�r � r̂ �

c��r
�c � ĉ �

h��r
�h � ĥ

f�r��r �
(r��r)2

r2 �
(c��r)2

r4��
2 �

(h��r)2

r2��
2

� r2 �� � 2 (56a)

�c �
r��c
�r � r̂ �

c��c
�c � ĉ �

h��c
�h � ĥ

f�c��c �
(r��c)2

r2 �
(c��c)2

r4��
2 �

(h��c)2

r2��
2 (56b)

�h �
r��h
�r � r̂ �

c��h
�c � ĉ �

h��h
�h � ĥ

f�h��h �
(r��h)2

r2 �
(c��h)2

r4��
2 �

(h��h)2

r2��
2 (56c)

Using equations 49, 53, 55, and 56, the entries of Crel are

Crel(1,1) � (1 � x)/[(1 � x)2 � y2 � z2]�1/2 (57a)

Crel(2,1) � y/[(1 � x)2 � y2 � z2]�1/2 (57b)

Crel(3,1) � z/[(1 � x)2 � y2 � z2]�1/2 (57c)

Crel(1,2) � 	�y � x(2y 	 x�) � (xx� � yy� � zz�) � (y 	 x�)(x2 � y2 � z2)

� x(xx� � yy� � zz�)�/{�y � x(2y 	 x�) � (xx� � yy� � zz�)
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� (y 	 x�) � (x2 � y2 � z2) � x(xx� � yy� � zz�)�2 � �1 � 3x � y�

� x(2x � y�) � (xy� 	 yx�) � (x2 � y2 � z2) � (x � y�)(x2 � y2 � z2)

	 y(xx� � yy� � zz�)�2 � �z� � 2xz� 	 zx� � z�(x2 � y2 � z2)

	 z(xx� � yy� � zz�)�2}�1/2 (57d)

Crel(2,2) � �1 � 3x � y� � x(2x � y�) � (xy� 	 yx�) � (x2 � y2 � z2)

� (x � y�)(x2 � y2 � z2) 	 y(xx� � yy� � zz�)�/{�y � x(2y 	 x�)

� (xx� � yy� � zz�) � (y 	 x�)(x2 � y2 � z2) � x(xx� � yy� � zz�)�2

� �1 � 3x � y� � x(2x � y�) � (xy� 	 yx�) � (x2 � y2 � z2)

� (x � y�)(x2 � y2 � z2) 	 y(xx� � yy� � zz�)�2 � �z� � 2xz� 	 zx�

� z�(x2 � y2 � z2) 	 z(xx� � yy� � zz�)�2}�1/2 (57e)

Crel(3,2) � �z� � 2xz� 	 zx� � z�(x2 � y2 � z2) 	 z(xx� � yy� � zz�)�/

{�y � x(2y 	 x�) � (xx� � yy� � zz�) � (y 	 x�)(x2 � y2 � z2)

� x(xx� � yy� � zz�)�2 � �1 � 3x � y� � x(2x � y�) � (xy� 	 yx�)

� (x2 � y2 � z2) � (x � y�)(x2 � y2 � z2) 	 y(xx� � yy� � zz�)�2

� �z� � 2xz� 	 zx� � z�(x2 � y2 � z2) 	 z(xx� � yy� � zz�)�2}�1/2

(57f)

Crel(1,3) � 	(z � xz 	 yz� � zy�)/�(z � xz 	 yz� � zy�)2 � (z� � yz 	 zx� � xz�)2

� (1 � 2x � y� � x2 � y2 � xy� 	 yx�)2��1/2 (57g)

Crel(2,3) � 	(z� � yz 	 zx� � xz�)/�(z � xz 	 yz� � zy�)2 � (z� � yz 	 zx� � xz�)2

� (1 � 2x � y� � x2 � y2 � xy� 	 yx�)2��1/2 (57h)

Crel(3,3) � (1 � 2x � y� � x2 � y2 � xy� 	 yx�)/�(z � xz 	 yz� � zy�)2

� (z� � yz 	 zx� � xz�)2
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� (1 � 2x � y� � x2 � y2 � xy� 	 yx�)2��1/2 (57i)

Equation 57 compose the complete, nonlinear relative direction cosine matrix.
By noting that the magnitudes of relative states are always less than unity, and for
most purposes, are several orders of magnitude less than unity, equation 57 can be
written as a series of polynomials of increasing order. The matrix Crel can then be
written in polynomial form, truncated at the appropriate order. The denominators
in equation 56 may be rewritten

�r � �r ��1 � [(r � �r)�(r � �r)]�1/2

� (r�r � 2r� �r � �r��r)�1/2

�
1

�r ��1 � 2
r��r

�r � ��r � ·
��r �
�r � �

��r � 2

�r � 2 ��1/2

�
1

r 	
k � 0

�

(	1)k���r �
�r � �

k

Pk� r��r
�r � ��r �� (58a)

Similarly, �c � �c ��1 �
1

r2��
	

k � 0

�

(	1)k���c �
�c � �

k

Pk� c��c
�c � ��c �� (58b)

and, �h � �h ��1 �
1

r��
	

k � 0

�

(	1)k���h �
�h � �

k

Pk� h��h
�h � ��h �� (58c)

where Pk is the kth Legendre polynomial. Equation 58 can be further simplified
into polynomials of the state variables. The summand in each of equation 58 can
be written as

���r �
�r � �

k

Pk� r��r
�r � ��r �� � (x2 � y2 � z2)k/2 Pk� x

(x2 � y2 � z2)1/2� (59a)

���c �
�c � �

k

Pk � c��c
�c � ��c �� � (�cx

2 � �cy
2 � �cz

2)k/2 Pk � �cy

(�cx
2 � �cy

2 � �cz
2)1/2� (59b)

���h �
h �k

Pk � h��h
�h � ��h �� � (�hx

2 � �hy
2 � �hz

2)k/2 Pk � �hz

(�hx
2 � �hy

2 � �hz
2)1/2� (59c)

where �cxr̂ � �cyĉ � �czĥ � �c/r2�� and �hxr̂ � �hyĉ � �hzĥ � �h/r��.
Using equation 58, the relative direction cosine matrix can be written as

Crel

� � 1 	 (y2 � z2)/2 	y � xy 	 zz� 	 z � yz� � xz
y 	 xy 1 	 (y2 � z�2)/2 	 z� � (x � y�)z� � (x� 	 y)z
z 	 xz z� 	 (x � y�)z� 	 zx� 1 	 (z2 � z�2)/2

�
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� h.o.t (60)

Nomenclature
a � Semimajor axis

e � Eccentricity

f � True anomaly

i � Inclination

p � Semiparameter

Pk(s) � Legendre polynomial of order k and argument s

r � Radial distance of target satellite from the planet

(u�, u�, u�) � Components of control in the radial, along-track, and out-
of-plane position

(ur, u�, uh) � Scaled components of control in the radial, along-track,
and out-of-plane position

vr � Radial velocity of the target satellite

v� � Circumferential velocity of the target satellite

� � Gravitational constant of the planet

� � �x y z } � � Scaled relative position vector with components
along radial, along-track, out-of-plane direction

| � �� � � } � � Relative position vector with components along
radial, along-track, out-of-plane direction

� � Argument of latitude

	 � Right Ascension of Ascending Node (RAAN)


 � Argument of perigee

(�) � Derivative with respect to true anomaly

(˙) � Derivative with respect to time
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