

American Institute of Aeronautics and Astronautics

1

Optimal Traffic Flow Scheduling Using High-

Performance Computing

Prasenjit Sengupta*, Jason Kwan†, and P. K. Menon‡

Optimal Synthesis Inc., Los Altos, CA 94022-2777

Algorithms for the end-to-end optimized scheduling of aircraft to enhance the

efficiency of the National Airspace System are developed. For a given set of flights

and desired departing schedules, routes are constructed and unimpeded 4-

dimensional trajectories are simulated. These trajectories serve as an input to a linear

programming based approach, and result in optimized schedules that are

deconflicted while assuring adherence to the system capacity constraints. For a large

number of flights the computational effort is formidable and optimization coupled

with the Dantzig-Wolfe decomposition technique has been found to be a suitable

approach. Techniques for accelerating the decomposition and solver on emerging

high-performance computing hardware are discussed. Acceleration results are

reported for realistic nationwide traffic flow problems using a multi-threaded CPU

implementation and a novel implementation on General-Purpose Graphics

Processing Units. A multi-threaded CPU implementation and a novel implementation

on General-Purpose Graphics Processing Units show acceleration over a state-of-the-

art, open-source, decomposition-based solver. Acceleration observed can be up to 𝟗 ×

for replicated flights and 𝟑 × for realistic nation -wide traffic flow optimization

examples.

I. Introduction

Traffic Flow Management (TFM) for aircraft operations broadly refers to techniques for flow control

of multiple aircraft in the airspace to prevent congestion and conflict, while ensuring on-time performance.

Several techniques for TFM have been presented in the literature to address its optimization using heuristics

* Research Scientist, 95 First Street Suite 240, Senior Member AIAA.
† Research Engineer, 95 First Street Suite 240.
‡ President and Chief Scientist, 95 First Street Suite 240, Fellow AIAA.

American Institute of Aeronautics and Astronautics

2

or by numerical techniques such as dynamic programming and genetic algorithms [1-16]. A key

advancement in optimization-based methods for TFM is the Bertsimas-Stock Patterson (BSP) model

[17,18], which poses the TFM problem as a binary integer program (IP). The Bertsimas-Lulli-Odoni (BLO)

model [19] and further developments by Agustin et al. [20] (the AAEP model) introduce additional

flexibility in the BSP model such as the possibility of multiple routes and fairer distribution of delays among

different flights. The BLO and AAEP models formulate the deterministic TFM problem by using a graph

abstraction of the airspace with nodes connected by one or more routes for all flights. The nodes can either

represent waypoints in the airspace jet routes, or entry and exit points for Sectors or Centers. The IP

mechanism can also be extended to the stochastic TFM problem with airspace capacity uncertainty, as

shown in [21,22].

The foregoing formulations result in a very large scale, sparse optimization problem. In other words,

the variables and constraints in the problem are numerous but each constraint typically is active on only a

small subset of the variables. It has been shown the IP has a strong linear program (LP) relaxation [17],

allowing for the use of standard LP solvers such as the simplex method, while resulting almost always in

binary solutions. Recent work [23,24] has shown that techniques such as Dantzig-Wolfe (DW)

decomposition [25] can exploit the unique block matrix structure of the LP and solve the problem using

parallel computation, and in the process significantly reduce the computation time even for problems

composed of a large number of flights over a large geographical area. Tandale et al. [26] have demonstrated

an implementation of the decomposition on Graphics Processing Units. The results in that work were based

on preliminary simulations which replicated a small set of flights multiple times to generate larger

problems.

The work described in this paper is a significant advancement of the approach described in [23], and

its contributions are as follows. First, it is based on the BLO and AAEP formulations of the TFM problem

which enable more general formulations. The most significant generalization is the modeling of multiple

routes to enable weather-related rerouting. Second, since data from traffic files typically are provided for a

single route, automated route generation and trajectory simulation for multiple routes of each flight are

performed. This additional step allows for additional flexibility in TFM studies. Third, in contrast with the

use of the GNU Linear Programming Kit (GLPK) [27] by the work in [23], the solver discussed in this

paper is an implementation of a sparse, two-phase, revised bounded simplex solver [28] which can be

executed on High-Performance Computers (HPCs) such as Graphics Processing Units (GPUs) as well as

multi-threaded, multi-core CPUs, and offers significant advantages in terms of memory usage, over the

regular simplex formulation. A detailed discussion of the potentially exponential memory requirement of

the DW algorithm and the utility of the revised simplex formulation to address this requirement is provided

in [29]. The use of GPUs is motivated by the high degree of parallelization possible on these devices.

American Institute of Aeronautics and Astronautics

3

Finally, a branch-and-cut algorithm, which can reduce the computation time required to solve binary integer

programs of the type observed in the BLO formulation, is also utilized. This algorithm leverages the

acceleration of the multithreaded implementation of the solver.

An outline of the architecture is shown in Figure 1. The inputs to the system are the flight demand

data, which can be either Future ATM Concept Evaluation Tool (FACET) [30] TRX files or Airspace

Concept Evaluation System (ACES) [31] FDS files. These files contain information on the filed flight plan

and departure time for a flight. Additional inputs include Base of Aircraft Data (BADA) [32] and ambient

wind data in the form of Rapid Update Cycle (RUC) or Rapid Refresh (RAP) files.

The flight plan data is then used in conjunction with the Coded Instrument Flight Procedures (CIFP)

database which consists of waypoints and jet routes utilized by flights in the NAS. For every flight, one or

more routes are constructed; the option of multiple routes is provided to allow flights to better manage their

schedule especially when certain areas of the airspace are made unavailable due to inclement weather. The

routes and the demand data are then used as inputs to a high-fidelity, high-speed, parallelized simulation

tool. This tool generates the data sets utilized by the BLO model to formulate the IP for scheduling, which

is then solved using the HPC-based DW decomposition and LP solver tool.

This paper is organized as follows. Section II describes the procedure for translating flight demand

data and NAS structural data into multiple routes for flights. Section III describes the simulation process

for generating spatio-temporal trajectories for each flight. This data is used to construct constraints for the

BLO model, which is described in Section IV. Section V discusses the computational approach for the

parallel implementation of the DW decomposition and simplex solver, and the computational experience

associated with a realistic use case comprising NAS-wide TFM operations. Conclusions and directions for

future research are given in Section VI.

II. Generation of Routes Using Demand Data and NAS Structure

The airspace is defined by waypoints and jet routes connecting these waypoints. Any flight from an

origin airport to a destination airport in the NAS has to follow a route that is composed of many such airway

segments. Also, the preferred route should be optimal with respect to considerations such as shortest path

or shortest flight time in the presence of wind. The present work employs the A* search algorithm on the

airway graph network to find the shortest path between a pair of origin-destination airports.The following

steps are involved in the A* search for the shortest route:

1. Parsing the TRX file to extract the origin-destination airport pairs for all flights

2. Creation of the NAS airway/waypoint graph network

3. Extracting the airway and waypoint data from the CIFP (Coded Instrument Flight Procedures)

formerly known as the National Flight Database (NFD)

American Institute of Aeronautics and Astronautics

4

4. Generating the airspace connectivity model

5. Implementation of the A* search

6. Generating the nominal routes between the origin-destination pairs in the absence of adverse

weather.

A. Parsing the TRX file and CIFP Data

The TRX file is used to identify the airport origin-destination pairs that are used in a particular

scenario. A TRX file record contains the following information:

TRACK DAL1598 B752 384800 1182000 484 370 0 ZOA ZOA33

FP_ROUTE SFO./.SAC131031..LVZ.LENDY5.JFK/1131

The data of interest are the origin and destination airport, shown in bold font in the example above. In

this case, the origin airport is SFO and the destination airport is JFK. For this work, only the origin and

destination airports are extracted; all other information in the TRX record is ignored. It is assumed that the

first and last fixes in the FP_ROUTE line of a TRX record are the origin and destination airports. No

validation is performed to determine if the first and last fix names correspond to airports or some other fix.

The CIFP enroute airways data is used to create the airspace connectivity matrix and is available as an XML

file with airway records. Each airway record contains a sequence of fixes which defines the route.

B. Airspace Connectivity and A* Search

The airspace connectivity matrix is formed by iterating over each airway in the global airways map.

For each airway, the fix sequence is iterated over and a '1' is set in the connectivity matrix for each

consecutive pair of fixes in the route. A general A* search algorithm [33-35] is used to find the shortest

path between two nodes. The cost associated with each path can be proportional to the great-circle distance

along a path, and the use of this cost function results in a shortest-distance route between two airports. If

no wind profile is considered, the shortest-distance route and minimum time route are identical under the

assumption of a constant airspeed in the enroute segment. Alternatively, by utilizing cruise airspeed

information from BADA and wind forecast information from RUC, a wind-optimal search can be

performed which results in a shortest-time route between two airports. An example of shortest-distance

routes obtained using the framework described here is shown in Figure 2. It is worth noting that the A*

search is one of many methods that can be used to generate routes. A comprehensive investigation of

methods used in practice is beyond the scope of this paper. Even if they are not necessarily used in practice,

American Institute of Aeronautics and Astronautics

5

the routes obtained from the A* search are operationally feasible since they are constructed from the CIFP

and are suited to the development of realistic scenarios in order to demonstrate optimized scheduling.

C. Generation of Shortest Paths around Adverse Weather

The A* search algorithm described above can be used to find shortest reroutes around adverse weather

by performing the search on a modified graph. Assuming that the adverse weather is described by a polygon,

all waypoints within the polygon and all airway segments intersecting the polygon can be removed.

However, this method generates routes for all flights that skirt the adverse weather polygon closely creating

congestion along the boundary of the polygon. In order to avoid congestion near the boundary, scaled

versions of the adverse weather polygon can be used to generate multiple reroute options for every flight

around the adverse weather as shown in Figure 3. Figure 4 shows the reroutes around the adverse weather

polygons for all origin-destination airport pairs for all 35,000 flights in the TRX file for July 13, 2005. Note

that the methodology handles multiple weather polygons and also both convex and non-convex polygons.

In the latter case, waypoints lying outside the non-convex polygon but in the convex hull are not used

because they will require an aircraft to turn back on its path. To avoid this operationally unrealistic scenario,

non-convex weather polygons are replaced by their convex hull.

III. Generation of Nominal and Unimpeded 4D Trajectories

The present work utilized the Computational Appliance for Rapid Prediction of Aircraft Trajectories

(CARPAT) software [36] for trajectory generation. CARPAT accepts flight demand data in the form of

FACET [30] TRX or ACES [31] FDS files and can generate 4D trajectory predictions for 35,000 aircraft

in the NAS over a 24-hour time horizon in less than 2.5 seconds. This is a significant acceleration over

FACET-based simulations. CARPAT uses the ambient wind field from RUC and BADA [32] performance

data for different aircraft types to generate accurate predictions. Multiple CARPAT trajectory predictions

can be performed using minimum and maximum speeds from the BADA performance tables to obtain 1)

earliest and latest entry times for every NAS resource and 2) minimum and maximum transit times for

every resource. The trajectory predictor produces data required by the constraint generator, detailed in the

next section. More specifically, an output of the predictor contains the earliest, latest, and nominal sector

entry and exit times for each flight in the TRX file, which are obtained by simulating trajectories at the

highest, lowest, and nominal groundspeed profiles, respectively. The outputs are grouped by alternative

routes for each flight, and the groups are ordered by departure times. Within each group, the rows are

ordered by the sequence in which the flight passes through each sector along its trajectory.

American Institute of Aeronautics and Astronautics

6

A significant advancement in this paper is the fact that due to the parallel nature of the unimpeded

simulation over different flights, the data sets and constraints for each flight in the BLO model can also

generated in parallel. Constraint generation for the optimization problem is discussed in the next section.

IV. Description of the BLO Integer Program and Constraint Construction

The BLO and AAEP models formulate the TFM problem in terms of the following optimization

problem:

min 𝑐⊤𝑥

𝐴𝑥 ≤ 𝑏

𝑥 ∈ {0,1}

(1)

Since the development of the optimization problem is largely the same in both [19] and [20], this paper

uses the variable notation in the latter. The following sections describe the construction of the decision

variables and the constraints.

A. Decision Variable and Data Sets

The variable of interest in IP formulation is denoted by 𝑥𝑓,𝑋𝑌
𝑡 , and is a binary variable, i.e. 𝑥𝑓,𝑋𝑌

𝑡 ∈

{0,1}. A value of 1 indicates that flight 𝑓 (member of set ℱ), reaches Node Y from Node X, by time interval

𝑡 ∈ 𝒯 using an arc connecting the two nodes. Nodes X and Y belong to set 𝒩𝑓 that is composed of all nodes

on the route(s) of flight 𝑓. The sets 𝒦𝑑 and 𝒦𝑎 denote the set of nodes corresponding to departure and

arrival airports, respectively. Since an airport in general is both a departure as well as an arrival airport,

𝒦𝑑 ∩ 𝒦𝑎 ≠ ∅. Let 𝑘𝑓
𝑑 ∈ 𝒦𝑑 and 𝑘𝑓

𝑎 ∈ 𝒦𝑎 denote departure and arrival airport nodes for flight 𝑓,

respectively. Node 𝑞(𝑘𝑓
𝑑) denotes the departure airport boundary, and 𝑝(𝑘𝑓

𝑎) denotes the arrival airport

boundary. The distinction between an airport node and its boundary node is noted in [20] and is used to

construct an optimization problem which allows for a detailed model for ground holds and runway delays.

For example, the difference between the actual and scheduled number of time units by which a flight arrives

at the airport boundary is representative of the departure delay or amount of ground hold enforced on a

flight.

The arc 𝑋𝑌 is a member of set 𝒜𝑓 = {𝑋𝑌|𝑋, 𝑌 ∈ 𝒩𝑓} that is composed of all arcs on the route(s) of

flight 𝑓. The set Γ𝑓
+(𝑋) = {𝑌|𝑋𝑌 ∈ 𝐴𝑓} and Γ𝑓

−(𝑋) = {𝑌|𝑌𝑋 ∈ 𝐴𝑓} are the set of nodes that have arcs from

Node X and leading into Node Y respectively, for flight 𝑓.

Whereas sets 𝒩𝑓 and 𝒜𝑓 denote all possible nodes and all possible arcs for flight 𝑓, the sets 𝒩𝑓
∗ ⊂ 𝒩𝑓

and 𝒜𝑓
∗ ⊂ 𝒜𝑓 denote the nodes and arcs corresponding to the scheduled route of flight 𝑓. The variables

𝑙𝑓,𝑋𝑌, 𝑟𝑓, and 𝑑𝑓 denote the travel time (number of time periods) for flight 𝑓 over arc XY, the scheduled

American Institute of Aeronautics and Astronautics

7

departure time period, and the scheduled arrival time period, respectively. It is noted in [20] that

𝑙
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

= 𝑙
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎 = 0, ∀𝑘𝑓

𝑑 ∈ 𝒦𝑑 , 𝑘𝑓
𝑎 ∈ 𝒦𝑎 . In other words, a flight reaches the departure airport

boundary immediately after leaving the departure airport node, and a flight reaches the arrival airport node

immediately after leaving the arrival airport boundary. It also follows that

 𝑟𝑓 = 𝑑𝑓 + ∑ 𝑙𝑓,𝑋𝑌

𝑋𝑌∈𝐴𝑓
∗

 (2)

In other words, the scheduled arrival time of the flight is given by the sum of the departure time and flight

times along scheduled route segments. Furthermore, 𝑙𝑓,𝑋𝑌 and 𝑙𝑓,𝑋𝑌 denote the maximum and minimum

number of time segments for flight 𝑓 on arc XY.

The 0-1 BLO variables can be used to determine quantities of interest for TFM. For instance, the time

segment in which the flight 𝑓 reaches node 𝑛 is denoted by 𝑇𝑓,𝑛 and given by the following summation:

 𝑇𝑓,𝑛 = ∑ ∑ 𝑡(𝑥𝑓,𝑋𝑌
𝑡 − 𝑥𝑓,𝑋𝑌

𝑡−1)

𝑡∈𝒯𝑋∈Γ𝑓
−(𝑌)

 (3)

It follows from Eq. (3) that given the time of entry at a node and the time of entry at a preceding node, the

number of time intervals required to travel on the arc connecting the nodes can be calculated. Additional

quantities such as sector counts (given the arcs belonging to a sector) can also be calculated, as detailed in

[19] and [20].

B. Constraint Formulation

The variables are linked with constraints resulting from the spatio-temporal representation of the

graph. The so-called flight structure constraints define the continuity in time and space for a flight. The

temporal continuity constraints [20] are represented by the following linear inequalities and equalities:

𝑥𝑓,𝑋𝑌

𝑡−1 ≤ 𝑥𝑓,𝑋𝑌
𝑡 , 𝑡 ∈ 𝒯𝑓,𝑋𝑌

∗ , (𝑋, 𝑌) ∈ 𝒜𝑓, 𝑓 ∈ ℱ

𝑥𝑓,𝑋𝑌
𝑡−1 = 𝑥𝑓,𝑋𝑌

𝑡 , 𝑡 ∈ 𝒯𝑓,𝑋𝑌 ∖ 𝒯𝑋𝑓,𝑌
∗ , (𝑋, 𝑌) ∈ 𝒜𝑓, 𝑓 ∈ ℱ

(4)

where 𝒯𝑓,𝑋𝑌
∗ is the set of feasible time units in which a flight 𝑓 can reach Node Y from Node X over the arc

connecting the two nodes, and 𝒯𝑓,𝑋𝑌 is the smallest set of consecutive time intervals that contains 𝒯𝑓,𝑋𝑌
∗ .

These constraints state that if a flight was in node 𝑋 by time period 𝑡, then this must also hold true for any

later time period 𝑡′ > 𝑡.

The spatial continuity constraints [20] are given by the following inequalities:

American Institute of Aeronautics and Astronautics

8

∑ 𝑥𝑓,𝑌𝑍

𝑡+𝑙𝑓,𝑌𝑍

𝑍∈Γ𝑓
+(𝑌)

≤ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)

≤ ∑ 𝑥𝑓,𝑌𝑍

𝑡+𝑙𝑓,𝑌𝑍

𝑍∈Γ𝑓
+(𝑌)

,

𝑡 ∈ 𝒯𝑓,𝑌 , 𝑌 ∈ 𝒩𝑓\{𝑘𝑓
𝑑 , 𝑘𝑓

𝑎}, 𝑓 ∈ ℱ

(5)

In the foregoing, 𝒯𝑓,𝑌 denotes the set of all times units by which a flight 𝑓 can reach Node Y from any other

node along the route of that flight. Spatial continuity constraints force connectivity through a node.

The third set of constraints is composed of those that are derived from airspace capacity. To formulate

the problem with capacity constraints, the sets 𝒩𝑓
𝑗+

 and 𝒩𝑓
𝑗−

 are defined for a flight 𝑓 in the 𝑗th sector, as

the set of nodes entering and leaving the 𝑗th Sector. The sector capacity constraints are given by the

following [20]:

 ∑ [∑ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)𝑌∈𝒩𝑓

𝑗+

− ∑ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)𝑌∈𝒩𝑓

𝑗−

]

𝑓∈ℱ

≤ 𝑆𝑗
𝑡 , 𝑡 ∈ 𝒯, 𝑗 ∈ 𝒥 (6)

The foregoing equation counts the number of flights entering Sector 𝑗 at time 𝑡, and subtracts from it, the

number flights leaving the Sector at that time. This number is constrained to be less than the Sector capacity

at that time, 𝑆𝑗
𝑡, for a Sector 𝑗 ∈ 𝒥. Similar capacity constraints can be derived for airport arrival and

departure capacity, but were not used in this work. Mechanisms to include arrival and departure capacity

constraints are described in [17], which can also explicitly model scenarios where the arrival and departure

capacity constraints are dependent on each other due to simultaneous operation on the same runways.

C. Cost Function Formulation

In the BLO model, the cost 𝐽 has contributions from different components, depending on the modeling

requirements of the problem. A comprehensive list is presented in [20], which not only includes the

components presented in [19], but also introduces additional terms for greater flexibility in formulating

TFM problems. In this work, the number of cancelled flights, overall flight ground delays, and airborne

delays were penalized. These three cost function components, denoted by 𝐽cancel, 𝐽ground , and 𝐽airborne, are

listed as follows:

 𝐽cancel = − ∑ 𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡

𝑓∈ℱ

, 𝑡 = max 𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

 (7)

𝐽ground = ∑ ∑ 𝑐𝑓,𝐺(𝑡) (𝑥

𝑓,𝑘𝑓
𝑑 ,𝑞(𝑘𝑓

𝑑)

𝑡 − 𝑥
𝑓,𝑘𝑓

𝑑 ,𝑞(𝑘𝑓
𝑑)

𝑡−1)

𝑡∈𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑓∈ℱ

(8)

American Institute of Aeronautics and Astronautics

9

𝐽airborne = ∑ [∑ 𝑐𝑓,𝑇(𝑡) (𝑥
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎

𝑡 − 𝑥
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎

𝑡−1)

𝑡∈𝒯
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎𝑓∈ℱ

− ∑ 𝑐𝑓,𝐺(𝑡) (𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡 − 𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡−1)

𝑡∈𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

]

(9)

where 𝑐𝑓,𝑇(𝑡) = 𝑐𝑇 ⋅ (𝑡 − 𝑟𝑓) and 𝑐𝑓,𝐺(𝑡) = 𝑐𝐺 ⋅ (𝑡 − 𝑑𝑓) (with constant 𝑐𝑇 and 𝑐𝐺) are coefficients such

that each additional unit of delay from scheduled arrival and departure has a proportionately heavier penalty.

Alternative formulations include the so-called superlinear cost function [19] with additional penalty on

larger delays. Computational experiments described in [19] have shown that this results in a more equitable

distribution of delays over the set of flights. It should be noted that although the cost function coefficients

can be functions of the time unit, they are not functions of the decision variables, and consequently, the

resulting cost function is still linear as shown in Eq. (1).

V. Solution using Parallelized Dantzig-Wolfe Decomposition

Prior work described in [23] shows that the BSP model exhibits the so-called primal block structure

[37], which is shown Figure 5. This structure is also exhibited by the BLO model and the constitution of

the blocks is discussed in Section V.A. The implementation details on parallel and high-performance

computers are discussed in Section V.B. Nationwide TFM examples and computational experience for these

problems are discussed in Section V.C.

A. Dantzig-Wolfe Structure

With reference to Figure 5, the constraints of the LP can be divided into master problem blocks 𝐷1

through 𝐷𝑛, and sub-problem blocks 𝐹1 through 𝐹𝑛, where 𝑛 is the number of flights in the simulation. In

other words, the LP can be written in the following form:

min 𝑐1
⊤𝑥1 + 𝑐2

⊤𝑥2 + ⋯ 𝑐𝑛
⊤𝑥𝑛

𝐷1𝑥1 + 𝐷2𝑥2 + ⋯ + 𝐷𝑛𝑥𝑛 = 𝑏𝐷

𝐹1𝑥1 = 𝑏𝐹1

𝐹2𝑥2 = 𝑏𝐹2

⋮

𝐹𝑛𝑥𝑛 = 𝑏𝐹𝑛

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0

(10)

American Institute of Aeronautics and Astronautics

10

where the variable set 𝑥𝑓 consist of all variables 𝑥𝑓,𝑋𝑌
𝑡 for a flight 𝑓 ∈ ℱ in the simulation. The master

problem constraints composed of block matrices 𝐷1 through 𝐷𝑛 consists of constraints that relate the

variables of multiple flights, and are composed of capacity constraints shown in Eq. (6). The sub-problem

constraints composed of block matrices 𝐹1 through 𝐹𝑛 consist of spatio-temporal constraints of individual

flights and only relate variables associated with a single flight each, as shown in Eqs. (4) and (5). Note that

in the foregoing equation the general LP form is assumed for the optimization problem, in which all

constraints are equality constraints and inequalities are converted to equalities using slack, surplus, and

artificial variables.

Let 𝑃𝑓 = {𝑥𝑓|𝐹𝑓𝑥𝑓 = 𝑏𝑓, 𝑥𝑓 ≥ 0}. This set denotes the feasible values for the variables for the 𝑓th

flight and can be rewritten as a convex combination of its extreme points and rays. In the context of the

BLO formulation, the feasible region is bounded since all variables are bounded in the region [0,1], and as

a consequence, 𝑃𝑓 can be expressed as a convex combination of extreme points only. Let the extreme points

of 𝑃𝑓 be denoted by 𝑥𝑓
𝑗
, where 𝑗 ∈ 𝒥𝑓 and 𝒥𝑓 is the set of indices iterating over the extreme points. The

monolithic problem shown in Eq. (10) is rewritten as the so-called master program:

min ∑ ∑ 𝜆𝑓
𝑗
𝑐𝑓

⊤𝑥𝑓
𝑗

𝑗∈𝒥𝑓𝑓∈ℱ

∑ ∑ 𝜆𝑓
𝑗
𝐷𝑓𝑥𝑓

𝑗

𝑗∈𝒥𝑓𝑓∈ℱ

= 𝑏𝐷

∑ 𝜆𝑓
𝑗

𝑗∈𝒥𝑓

= 1, ∀𝑓 ∈ ℱ

𝜆𝑓
𝑗

≥ 0, ∀𝑗 ∈ 𝒥, 𝑓 ∈ ℱ

(11)

where 𝜆𝑓
𝑗
 are decision variables.

Let the number of rows in the master problem blocks 𝐷1,…𝑛 be denoted by 𝑚0 and the number of rows

in each sub-problem block be denoted by 𝑚1,…,𝑛. Then, the number of constraints in the monolithic form

of the problem shown in Eq. (10) is equal to 𝑚0 + ∑ 𝑚𝑓𝑓∈ℱ , whereas the master program shown in Eq.

(11) consists of 𝑚0 + 𝑛 constraints. The BLO formulation constraints are such that 𝑚0 is significantly

smaller than the number of monolithic constraints; however this is achieved by using an exponentially

larger number of variables which correspond to the extreme points of all the sub-problems.

The advantage of the DW decomposition is that in spite of a large number of variables, at any given

simplex iteration of the master program, a vast majority of the variables 𝜆𝑓
𝑗
 are zero and their corresponding

columns in the master program simplex tableau are not used. By utilizing a process called delayed column

American Institute of Aeronautics and Astronautics

11

generation, only potentially useful columns are added to the master program iteration. Details of the

algorithm can be found in [25,29] and are summarized here.

Dual variables are associated with the master problem constraints, of which 𝑚0 dual variables, denoted

by 𝜎, correspond to the capacity constraints, and 𝑛 dual variables, denoted by 𝜋1,…,𝑛, correspond to the

convexity constraints for the 𝑛 sub-problems. In the revised simplex tableau, the dual variables are obtained

directly from the row of reduced costs. The 𝑓th sub-problem consists of the LP min (𝑐𝑓
⊤ − 𝜎⊤𝐷𝑓)𝑥𝑓 , 𝑥𝑓 ∈

𝑃𝑓. If the optimal cost to this problem is less than 𝜋𝑓, then the optimal solution is an extreme point, and a

column [(𝐷𝑓𝑥𝑓
𝑗
)

⊤
 𝑒𝑓

⊤]
⊤

 is generated, where 𝑒𝑓 is a vector of length 𝑛 consisting of zeros everywhere

except for the 𝑓th entry, which is equal to 1. If the optimal cost is no less than 𝜋𝑓 , no column is generated.

Since the BLO variables are bounded, the optimal cost is always finite. The master problem reaches

optimality when no columns are generated by any sub-problem.

Of importance is the fact that the 𝑓th sub-problem consists only of constraints given by the matrix 𝐹𝑓,

and the solution to one sub-problem does not depend on the solutions to the other sub-problems. This

motivates the use of parallel implementations of the DW decomposition.

B. Parallel Implementation on Multithreaded, Multicore, and High-Performance Computers

Parallelized implementation of the DW decomposition is achieved at two levels. In the first, “coarse”

level of parallelization, each sub-problem is solved independently. A simplex tableau is created for every

sub-problem and the pivoting operations on each tableau are executed in parallel. Constraint elimination is

performed simultaneously with constraint generation for each sub-problem, in order to reduce the problem

size. Single-variable inequalities and equalities are converted to variable bounds and fixed variables,

respectively. Fixed variables are then removed from constraints. If a master problem constraint is such that

it only involves variables from a single sub-problem, it is assigned to the corresponding sub-problem block

matrix. Finally, redundant capacity constraints are removed by utilizing variable bounds, since all variables

are bounded. The foregoing steps are repeated until the number of constraints does not change.

The process of sub-problem tableau generation is performed in parallel since the construction steps for

one sub-problem do not require access to computer memory containing information of the other sub-

problems. Parallel thread management on CPUs is performed using the Open Multi-Processing (OpenMP)

framework, which uses compiler directives to assign a separate thread to the optimization of each sub-

problem. On GPUs, parallelized code is developed using the Compute Unified Device Architecture

(CUDA) framework, and parallel processes are invoked using CUDA ‘kernels’. The CUDA compiler

launches a separate kernel thread for each sub-problem in parallel.

American Institute of Aeronautics and Astronautics

12

 The number of cores offered by GPUs is significantly larger; however they typically have a lower

clock speed than CPUs. For example, the NVIDIA™ Titan GPU offers 2688 cores operating at 732 MHz,

whereas an Intel® Xeon® processor family typically offers 2 cores with 12 concurrent threads each,

operating at 2.4 GHz.

The second, “fine” level of parallelization is achieved at the simplex iteration stage. As noted before,

the research in this paper utilized a two-phase, bounded, revised simplex algorithm. Details of the simplex

method are given in [28]; it is sufficient to note here that the two-phase solver is aimed at addressing

problems where an initial basic feasible solution from which simplex iterations are initiated, may not exist.

For example, if the problem consists of constraints where 𝐴𝑔𝑥 ≥ 𝑏𝑔 > 0, then 𝑥 = 0 is no longer an initial

basic feasible solution, and the first phase of the solver identifies such a solution using artificial variables,

and the second phase of the solver iterates on the basic feasible solution to achieve an optimal solution. The

bounded simplex method explicitly models variable bounds, and does not pose them as constraints. This is

useful from the perspective of the BLO model because every variable in the LP relaxation is bounded

between 0 and 1, and adding these bounds would increase the number of constraints by the number of

variables in the problem. The revised simplex algorithm differs from the regular simplex algorithm in that

the tableau only consists of columns from the current basis at any iteration. While this can require additional

computations at every iteration to generate the column corresponding to leaving variables, the memory

requirement is significantly reduced. This approach is useful when the number of variables in the problem

is significantly larger than the number of constraints; in this case the simplex method only requires storage

for a square tableau matrix whose dimension is equal to the number of constraints.

The use of the revised simplex algorithm is motivated by the fact that the master program defined in

Eq. (11) has an exponentially large number of variables but a significantly smaller set of constraints in

comparison with the monolithic problem. Although the simplex algorithm is sequential in nature, fine-grain

parallelization is used to perform simultaneous pivoting of all rows and the calculation of the reduced costs,

within each sub-problem. Fine grain parallelization generally cannot be implemented in the CPU

architecture but the CUDA framework on GPUs allows for the launch of sub-kernels from kernels,

exploiting the large number of cores.

C. Computational Experience for NAS-Wide TFM Problems

The foregoing sections describe the different steps utilized to transcribe flight demand data into an

optimization problem for the solver. This section describes the application of this approach to two use cases

and discusses the computational experience for both problems. It should be noted at the outset that in both

examples, the LP solution was exactly integral. Strength of the LP relaxation for very large problems has

been noted in [23].

American Institute of Aeronautics and Astronautics

13

East Coast Flights

This example consists all flights arriving and departing in the eastern region of the continental United

States in the 24 hour period on July 30, 2005. There are 4,366 flights in this simulation, and at a resolution

of 3 minutes the resulting monolithic problem has 976,203 variables and 1,292,646 constraints. Of this, the

master problem blocks are composed of 15,209 constraints, and the sub-problems consist of 224 variables

and 293 constraints on an average. When decomposed, the variables and constraints for each flight

constitute a separate sub-problem. Sector Monitor Alert Parameter (MAP) values were chosen as capacity

constraints in this example, and the maximum amount of delay allowed by any flight was 25 minutes.

The problem described here is significantly larger than those described in [23] or later works

demonstrating GPU-based decomposition [26], namely in terms of the number of master problem

constraints. An attempt was made to reduce the number of constraints by removing inactive constraints but

this approach does not work well for diverse schedules over a large time frame. In order to ensure that there

is only one optimal solution, flights departing from and arriving at the same airport were assigned priorities

based on their desired departure time, which was then used to scale their respective cost function

coefficients.

The execution time on an Intel Xeon processor with 24 maximum concurrent threads at 2.4 GHz, and

an NVIDIA Titan GPU with 2,688 cores at a clock speed of 732MHz is shown in Figure 6. A comparison

is made with the wall clock time of dwsolver [23]; which also utilizes multithreading together with GLPK.

Results are also verified against those obtained from dwsolver. No capacity constraints were found to be

active due to the restricted geographical area, and the computation time is therefore equivalent to the amount

of time required to optimize the sub-problems. A comparison with a monolithic problem was not pursued

due to the infeasible time and memory requirements of the latter problem. Comparisons with restricted-

license optimization software were also not performed but such comparisons are shown in [23].

Figure 6 shows that an OpenMP implementation of the multithreaded decomposition problem

performs significantly better than the GPU implementation. It also shows an approximately 3 ×

acceleration over dwsolver. The fastest execution time for a problem of this size is 15 seconds.

Parallelization on GPUs, both at the coarser level of sub-problem assignment and at the finer level of

pivoting operations, produces best results when the operation is data parallel as well as task parallel. While

the TFM problem is task-parallelizable at a coarse level due to sub-problem independence, the only

circumstance under which it is also task-parallelizable and data-parallelizable at a finer level is when every

thread requires the same amount of memory and the same number of computational steps. The flights in a

realistic example are all of different durations and lengths due to the diversity of flight lengths in the NAS.

Consequently, the number of variables and constraints utilized to model a flight’s trajectory can show

significant variance. Not only does this result in each sub-problem simplex tableau requiring different

American Institute of Aeronautics and Astronautics

14

amounts of memory, each sub-problem also requires a different number of steps to reach optimality and to

generate the column for the entering variables in the master program. Therefore, the GPU is not able to

leverage parallelization at a level beyond that of separate sub-problem assignment and its overall

performance is impacted by the relatively slower clock speed in comparison with CPUs. Only in the special

case of identical flights does the GPU perform significantly better than a multithreaded CPU. In this case,

acceleration of up to 9× was observed using the GPU-based solver, and for smaller problems larger

acceleration values have been reported [26]. The fact that realistic problems, including the ones presented

here, do not adhere to this ideal is also exhibited by the flattening of the execution time curve as a function

of the number of concurrent threads in Figure 6. Although replicated flight examples are not expected in

the real world, they can appear as a result of experiments which require stochastic analysis using Monte

Carlo simulations. The GPU -based solver is beneficial for these problems.

Metro Flights

This example consists of all flights arriving and departing into one of the 40 major airports in the NAS.

As shown in the previous example, a discrete interval of 3 minutes was chosen over a 24 hour period on

July 30, 2005. This example consists of 8,522 flights or sub-problems. The total number of variables

resulting from the BLO formulation is 2,149,850, and the total number of constrains is 2,832,558. Of these,

the master problem consists of 34,668 constraints. On an average, each sub-problem consists of 252

variables and 328 constraints, which is of the same order as the sub-problems in the previous example.

However, the number of sector capacity constraints is more than double the number of constraints modeled

in the East Coast example and indicates the larger number of sectors in which capacity is enforced. This

problem consists of 907 unique sectors in which capacity constraints (MAP values) are enforced, and

constitutes a significant portion of the NAS. As an indicator of the size of the problem, the frequency of the

number of flights which have a given number of links is shown in Figure 7. In this example, the route of a

flight is discretized such that a link connects an entry and exit node at a sector along the route of a flight.

Arbitrary weather polygons as shown in Figure 4 were introduced in this example, and as a consequence,

some flights have up to 3 alternative routes.

Optimization results show that approximately 2% of the flights were delayed by 2 time units and less

than 1% of the flights were delayed by 3 time units. Since airborne delays are made to incur a larger penalty

than ground delays, all the delays observed appeared on the ground. The appearance of delays shows that

some of the capacity constraints are active, which is also indicated by a small number of master problem

iterations. These do not contribute significantly to the computation time. Execution time for this problem

as a function of the number of threads is shown in Figure 8. The best-case performance is observed to be

28 seconds, which also represents a speedup of approximately 3 × over dwsolver. In this case too, the

multithreaded CPU implementation is a significant improvement over the GPU implementation due to the

American Institute of Aeronautics and Astronautics

15

causes mentioned in the previous example. As noted in Figure 7, the distribution of sub-problem size shows

a relatively large variance in comparison with the mean. For geographically-restricted problems, the

variance may be smaller and as a consequence, each sub-problem may be of similar size, but the number

of steps required for the simplex algorithm to reach an optimal solution to the sub-problems can be different.

It is worth noting that the revised simplex formulation pursued in this paper required approximately

11% of the memory utilized by the GLPK-based DW decomposition (5GB in comparison with 45GB).

Larger examples could not be tested due to a 6GB limit on the NVIDIA Titan card used in this research.

VI. Conclusions

This paper describes an end-to-end system for TFM optimization, inputs to which are the nominal

flight schedules in standard format (e.g. TRX files), and the outputs are the optimized schedules which

account for airspace capacity constraints. The approach considers the possibility of multiple routes due to

weather-avoidance strategies and shows acceleration over the state-of-the-art solutions. The acceleration

can be as high as 9× that of dwsolver when the sub-problems in the DW decomposition are data-parallel,

i.e. all sub-problems require the same amount of memory and execute the same number of simplex

iterations. However, in real-world examples in which the number of variables and constraints can vary over

the different flights in the simulation, the OpenMP-based multi-threaded implementation on CPUs is

significantly faster than GPU implementation. Performance is also impacted by the large number of master

problem constraints when considering realistic, NAS-wide problems. In this case, the CPU implementation

shows an acceleration of 3× over dwsolver whereas the GPU implementation is slower than dwsolver. It

should also be noted that in a NAS-wide example consisting of 8,522 flights from the 40 major US airports,

the approach presented in this paper requires approximately 11% of the memory required by dwsolver. In

the best case the nationwide, 40 major-airport problem for a 24-hour schedule at a resolution of 3 minutes,

was solved in 28 seconds.

Research has yielded considerable insight in the parallel nature of LP solvers and other optimization

methods. For instance, the use of a system with multiple GPUs to surmount memory limitations and to

address larger problems is an avenue of future research. While the simplex method is well-suited to the

Dantzig-Wolfe decomposition, there is evidence in the literature supporting the use of Interior Point

methods. The latter category may offer certain advantages over simplex. For example, it was observed that

the GPU implementation is impacted when the sub-problems do not execute the same number of steps.

While the simplex can be terminated at a fixed number of steps, this approach is generally arbitrary and

provides no guarantees on the optimality of the solution. On the other hand, interior point methods can

provide an estimate of the duality gap which is an indicator of solution optimality when calculations are

terminated after a fixed number of iterations. Assessing the use of other types of optimization techniques is

American Institute of Aeronautics and Astronautics

16

therefore a useful exercise. The generic nature of the solver and decomposition itself lends itself to a large

variety of schedule optimization problems in different industries. More specifically, the approach shows

promise for the integrated arrival and departure scheduling problem in the terminal area and airport surface.

The computation times observed in the examples suggest guidelines for selecting the time horizon and

resolution for applications in this domain.

Acknowledgments

This research was supported by NASA Contract No. NNX12CA05C, with Dr. Joseph L. Rios of

NASA Ames Research Center serving as the Technical Monitor.

References

[1] Andreatta, G. and Romanin-Jacur, G., “Aircraft Flow Management Under Congestion,"

Transportation Science, Vol. 21, No. 4, Nov. 1987, pp. 249—253.

 doi: 10.1287/trsc.21.4.249

[2] Helme, M. P., “Reducing Air Traffic Delay in a Space-Time Network," Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, Chicago, IL, Vol. 1, Oct. 1992,

pp. 236—242.

 doi: 10.1109/ICSMC.1992.271770

[3] Terrab, M. and Odoni, A. R., “Strategic Flow Management for Air Traffic Control," Operations

Research, Vol. 41, No. 1, Jan.-Feb. 1993, pp. 138—152.

 doi: 10.1287/opre.41.1.138

[4] Richetta, O. and Odoni, A. R., “Solving Optimally the Static Ground-Holding Policy Problem in Air

Traffic Control,” Operations Research Society of America, Vol. 27, No. 3, Aug. 1993, pp. 228—238.

 doi: 10.1287/trsc.27.3.228

[5] Vranas, P. B., Bertsimas, D. J., and Odoni, A. R., “The Multi-Airport Ground-Holding Problem in

Air Traffic Control,” Operations Research, Vol. 42, No. 2, Mar.-Apr 1994, pp. 249—261.

 doi: 10.1287/opre.42.2.249

[6] Richetta, O. and Odoni, A. R., “Dynamic Solution to the Ground-Holding Problem in Air Traffic

Control," Transportation Research Part A: Policy and Practice, Vol. 28, No. 3, May 1994, pp. 167—

185.

 doi: 10.1016/0965-8564(94)90015-9

[7] Vranas, P. B., Bertsimas, D. J., and Odoni, A. R., “Dynamic Ground-Holding Policies for a Network

of Airports,” Transportation Science, Vol. 28, No. 4, Nov. 1994, pp. 275—291.

 doi: 10.1287/trsc.28.4.275

American Institute of Aeronautics and Astronautics

17

[8] Rikfin, R. M., The Single Airport Static Stochastic Ground Holding Problem, Master's Thesis,

Massachusetts Institute of Technology, 1994.

[9] Hoffman, R. L., Integer Programming Models for Ground-Holding in Air Traffic Flow Management,

Ph.D. Dissertation, University of Maryland at College Park, 1997.

[10] Navazio, L. and Romanin-Jacur, G., “The Multiple Connections Multi-Airport Ground-Holding

Problem: Models and Algorithms,” Transportation Science, Vol. 32, No. 3, Aug. 1998, pp. 268—

276.

 doi: 10.1287/trsc.32.3.268

[11] Grabbe, S., Sridhar, B., and Mukherjee, A., “Central East Pacific Flight Scheduling,” AIAA Guidance,

Navigation, and Control Conference and Exhibit, Hilton Head, SC, Paper AIAA 2007-6447, Aug.

2007.

 doi: 10.2514/6.2007-6447

[12] Mukherjee, A. and Hansen, M., “A Dynamic Stochastic Model for the Single Airport Ground Holding

Problem," Transportation Science, Vol. 41, No. 4, Nov. 2007, pp. 444—456.

 doi: 10.1287/trsc.1070.0210

[13] Liu, P.-C. B., Hansen, M., and Mukherjee, A., “Scenario-Based Air Traffic Flow Management: From

Theory to Practice," Transportation Research Part B: Methodological, Vol. 42, Nos. 7-8, Aug. 2008,

pp. 685—702.

 doi: 10.1016/j.trb.2008.01.002

[14] Sridhar, B., Grabbe, S., and Mukherjee, A., “Modeling and Optimization in Traffic Flow

Management,” Proceedings of the IEEE, Vol. 96, No. 12, Dec. 2008, pp. 2060—2080.

 doi: 10.1109/JPROC.2008.2006141

[15] Mukherjee, A. and Hansen, M., “A Dynamic Rerouting Model for Air Traffic Flow Management,"

Transportation Research Part B: Methodological, Vol. 43, No. 1, Jan. 2009, pp. 159—171.

 doi: 10.1016/j.trb.2008.05.011

[16] Xue, M., and Zelinski, S., “Optimal Integration of Departures and Arrivals in Terminal Airspace,”

Journal of Guidance, Control, and Dynamics, Vol. 37, No. 1, Jan.-Feb. 2014, pp. 207—213.

 doi: 10.2514/1.60489

[17] Bertsimas, D. and Patterson, S. S., “The Air Traffic Flow Management Problem with Enroute

Capacities," Operations Research, Vol. 46, No. 3, May-Jun. 1998, pp. 406—422.

 doi: 10.1287/opre.46.3.406

[18] Bertsimas, D. and Patterson, S. S., “The Traffic Flow Management Rerouting Problem in Air Traffic

Control: A Dynamic Network Flow Approach," Transportation Science, Vol. 34, No. 3, Aug. 2000,

pp. 239—255.

American Institute of Aeronautics and Astronautics

18

 doi: 10.1287/trsc.34.3.239.12300

[19] Bertsimas, D., Lulli, G., and Odoni, A., “An Integer Optimization Approach to Large-Scale Air

Traffic Flow Management,” Operations Research, Vol. 59, No. 1, Jan.-Feb. 2011, pp. 211—227.

 doi: 10.1287/opre.1100.0899

[20] Agustin, A., Alonso-Ayuso, A., Escudero, L. F., and Pizarro, C., “On Air Traffic Flow Management

with Rerouting. Part I: Deterministic Case,” European Journal of Operational Research, Vol. 219,

No. 1, May 2012, pp. 156—166.

 doi: 10.1016/j.ejor.2011.12.021

[21] Agustin, A., Alonso-Ayuso, A., Escudero, L. F., and Pizarro, C., “On Air Traffic Flow Management

with Rerouting. Part II: Stochastic Case,” European Journal of Operational Research, Vol. 219, No.

1, May 2012, pp. 167—177.

 doi: 10.1016/j.ejor.2011.12.032

[22] Sengupta, P., Tandale, M. D., and Menon, P. K., “Risk-Hedged Traffic Flow Management under

Airspace Capacity Uncertainties,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, Sep.-

Oct. 2014, pp. 1487—1500.

 doi: 10.2514/1.G000412

[23] Rios, J., and Ross, K., “Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow

Scheduling,” Journal of Aerospace Computing, Information, and Communication, Vol. 7, No. 1, Jan.

2010, pp. 32—45.

 doi: 10.2514/1.45606

[24] Wei, P., Cao, Y., and Sun, D., “Total Unimodularity and Decomposition Method for Large-Scale Air

Traffic Cell Transmission Model,” Transportation Research Part B: Methodological, Vol. 53, Jul.

2013, pp. 1—16.

 doi: 10.1016/j.trb.2013.03.004

[25] Dantzig G B., and Wolfe P., “Decomposition Principle for Linear Programs,” Operations Research,

Vol. 8, No. 1, Jan.-Feb. 1960, pp. 101—111.

 doi: 10.1287/opre.8.1.101

[26] Tandale, M. D., Wiraatmadja, S., Vaddi, V. V., and Rios, J. L., “Massively Parallel Optimal Solutions

to the Nationwide Traffic Flow Management Problem,” AIAA Aviation Technology, Integration, and

Operations Conference, Los Angeles, CA, Paper AIAA 2013-4349, Aug. 2013.

 doi: 10.2514/6.2013-4349

[27] Makhorin, A., “GNU Linear Programming Kit, Version 4.34,”

http://www.gnu.org/software/glpk/glpk.html.

http://www.gnu.org/software/glpk/glpk.html

American Institute of Aeronautics and Astronautics

19

[28] Maros, I., Computational Techniques of the Simplex Method, Kluwer Academic Publishers, The

Netherlands, 2003.

[29] Bertsimas, D., and Tsitsiklis, J. N., Introduction to Linear Optimization, Athena Scientific, Belmont,

MA, 1997, Chap. 6.

[30] Bilimoria, K. D., Sridhar, B., Chatterji, G. B., Sheth, G., and Grabbe, S., “FACET: Future ATM

Concepts Evaluation Tool,” 3rd USA/Europe Air Traffic Management R&D Seminar, Naples, Italy,

June 2000.

[31] Raytheon ATMSDI Team, “Airspace Concept Evaluation System Build 2 Software User Manual,”

NASA Ames Research Center, Moffett Field, CA, November 2003.

[32] Base of Aircraft DAta (BADA)

http://www.eurocontrol.int/eec/public/standard_page/proj_BADA.html

[33] Wikipedia Page on the A* search algorithm: http://en.wikipedia.org/wiki/A*_search_algorithm

[34] Russell, S., Norvig, P., “Artificial Intelligence: A Modern Approach,” Ed. 3, Prentice Hall, 2009

[35] Heineman, G. T., Pollice, G., Selkow, S., “Algorithms in a Nutshell: A Desktop Quick Reference,”

O’Reilly Media Inc., 2009.

[36] Tandale, M. D., Wiraatmadja, S., Menon, P. K., and Rios, J. L., “High-Speed Prediction of Air Traffic

for Real-Time Decision Support,” AIAA Guidance Navigation and Control Conference, Portland OR,

8-11 August, 2011.

[37] Tebboth, J. R., A Computational Study of the Dantzig-Wolfe Decomposition, Ph.D. Dissertation,

University of Buckingham, United Kingdom, 2001.

http://www.eurocontrol.int/eec/public/standard_page/proj_BADA.html
http://en.wikipedia.org/wiki/A*_search_algorithm

American Institute of Aeronautics and Astronautics

20

Figure 1. Conceptual Overview of the Traffic Flow Optimization Tool

American Institute of Aeronautics and Astronautics

21

Figure 2. Shortest Routes between Origin-Destination Airport Pairs Generated by the A* Search

American Institute of Aeronautics and Astronautics

22

Figure 3. Generation of Alternate Reroutes Given the Adverse Weather Polygon

American Institute of Aeronautics and Astronautics

23

Figure 4. Reroutes Around Multiple Adverse Weather Polygons in the NAS

Figure 5. Primal Block Angular Structure of the TFM Constraint Matrix

American Institute of Aeronautics and Astronautics

24

Figure 6. Execution Time Trend as a Function of OpenMP Threads for The East Coast Example

American Institute of Aeronautics and Astronautics

25

Figure 7. Distribution of the Number of Links Constituting a Flight’s Path in the Metro Airport

TFM Example

American Institute of Aeronautics and Astronautics

26

Figure 8. Execution Time Trend as a Function of OpenMP Threads for The 40-Airport Example

