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Optimal Traffic Flow Scheduling Using High-

Performance Computing 

Prasenjit Sengupta*, Jason Kwan†, and P. K. Menon‡ 

Optimal Synthesis Inc., Los Altos, CA 94022-2777 

Algorithms for the end-to-end optimized scheduling of aircraft to enhance the 

efficiency of the National Airspace System are developed. For a given set of flights 

and desired departing schedules, routes are constructed and unimpeded 4-

dimensional trajectories are simulated. These trajectories serve as an input to a linear 

programming based approach, and result in optimized schedules that are 

deconflicted while assuring adherence to the system capacity constraints. For a large 

number of flights the computational effort is formidable and optimization coupled 

with the Dantzig-Wolfe decomposition technique has been found to be a suitable 

approach. Techniques for accelerating the decomposition and solver on emerging 

high-performance computing hardware are discussed. Acceleration results are 

reported for realistic nationwide traffic flow problems using a multi-threaded CPU 

implementation and a novel implementation on General-Purpose Graphics 

Processing Units. A multi-threaded CPU implementation and a novel implementation 

on General-Purpose Graphics Processing Units show acceleration over a state-of-the-

art, open-source, decomposition-based solver. Acceleration observed can be up to 𝟗 × 

for replicated flights and 𝟑 × for realistic nation -wide traffic flow optimization 

examples. 

I. Introduction 

Traffic Flow Management (TFM) for aircraft operations broadly refers to techniques for flow control 

of multiple aircraft in the airspace to prevent congestion and conflict, while ensuring on-time performance. 

Several techniques for TFM have been presented in the literature to address its optimization using heuristics 
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or by numerical techniques such as dynamic programming and genetic algorithms [1-16]. A key 

advancement in optimization-based methods for TFM is the Bertsimas-Stock Patterson (BSP) model 

[17,18], which poses the TFM problem as a binary integer program (IP). The Bertsimas-Lulli-Odoni (BLO) 

model [19] and further developments by Agustin et al. [20] (the AAEP model) introduce additional 

flexibility in the BSP model such as the possibility of multiple routes and fairer distribution of delays among 

different flights. The BLO and AAEP models formulate the deterministic TFM problem by using a graph 

abstraction of the airspace with nodes connected by one or more routes for all flights. The nodes can either 

represent waypoints in the airspace jet routes, or entry and exit points for Sectors or Centers. The IP 

mechanism can also be extended to the stochastic TFM problem with airspace capacity uncertainty, as 

shown in [21,22]. 

The foregoing formulations result in a very large scale, sparse optimization problem. In other words, 

the variables and constraints in the problem are numerous but each constraint typically is active on only a 

small subset of the variables. It has been shown the IP has a strong linear program (LP) relaxation [17], 

allowing for the use of standard LP solvers such as the simplex method, while resulting almost always in 

binary solutions. Recent work [23,24] has shown that techniques such as Dantzig-Wolfe (DW) 

decomposition [25] can exploit the unique block matrix structure of the LP and solve the problem using 

parallel computation, and in the process significantly reduce the computation time even for problems 

composed of a large number of flights over a large geographical area. Tandale et al. [26] have demonstrated 

an implementation of the decomposition on Graphics Processing Units. The results in that work were based 

on preliminary simulations which replicated a small set of flights multiple times to generate larger 

problems. 

The work described in this paper is a significant advancement of the approach described in [23], and 

its contributions are as follows.  First, it is based on the BLO and AAEP formulations of the TFM problem 

which enable more general formulations. The most significant generalization is the modeling of multiple 

routes to enable weather-related rerouting. Second, since data from traffic files typically are provided for a 

single route, automated route generation and trajectory simulation for multiple routes of each flight are 

performed. This additional step allows for additional flexibility in TFM studies. Third, in contrast with the 

use of the GNU Linear Programming Kit (GLPK) [27] by the work in [23], the solver discussed in this 

paper is an implementation of a sparse, two-phase, revised bounded simplex solver [28] which can be 

executed on High-Performance Computers (HPCs) such as Graphics Processing Units (GPUs) as well as 

multi-threaded, multi-core CPUs, and offers significant advantages in terms of memory usage, over the 

regular simplex formulation. A detailed discussion of the potentially exponential memory requirement of 

the DW algorithm and the utility of the revised simplex formulation to address this requirement is provided 

in [29]. The use of GPUs is motivated by the high degree of parallelization possible on these devices. 
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Finally, a branch-and-cut algorithm, which can reduce the computation time required to solve binary integer 

programs of the type observed in the BLO formulation, is also utilized.  This algorithm leverages the 

acceleration of the multithreaded implementation of the solver. 

An outline of the architecture is shown in Figure 1. The inputs to the system are the flight demand 

data, which can be either Future ATM Concept Evaluation Tool (FACET) [30] TRX files or Airspace 

Concept Evaluation System (ACES) [31] FDS files. These files contain information on the filed flight plan 

and departure time for a flight. Additional inputs include Base of Aircraft Data (BADA) [32] and ambient 

wind data in the form of Rapid Update Cycle (RUC) or Rapid Refresh (RAP) files.  

The flight plan data is then used in conjunction with the Coded Instrument Flight Procedures (CIFP) 

database which consists of waypoints and jet routes utilized by flights in the NAS. For every flight, one or 

more routes are constructed; the option of multiple routes is provided to allow flights to better manage their 

schedule especially when certain areas of the airspace are made unavailable due to inclement weather. The 

routes and the demand data are then used as inputs to a high-fidelity, high-speed, parallelized simulation 

tool. This tool generates the data sets utilized by the BLO model to formulate the IP for scheduling, which 

is then solved using the HPC-based DW decomposition and LP solver tool.  

This paper is organized as follows. Section II describes the procedure for translating flight demand 

data and NAS structural data into multiple routes for flights. Section III describes the simulation process 

for generating spatio-temporal trajectories for each flight. This data is used to construct constraints for the 

BLO model, which is described in Section IV. Section V discusses the computational approach for the 

parallel implementation of the DW decomposition and simplex solver, and the computational experience 

associated with a realistic use case comprising NAS-wide TFM operations. Conclusions and directions for 

future research are given in Section VI. 

II. Generation of Routes Using Demand Data and NAS Structure 

The airspace is defined by waypoints and jet routes connecting these waypoints. Any flight from an 

origin airport to a destination airport in the NAS has to follow a route that is composed of many such airway 

segments. Also, the preferred route should be optimal with respect to considerations such as shortest path 

or shortest flight time in the presence of wind.  The present work employs the A* search algorithm on the 

airway graph network to find the shortest path between a pair of origin-destination airports.The following 

steps are involved in the A* search for the shortest route: 

1. Parsing the TRX file to extract the origin-destination airport pairs for all flights 

2. Creation of the NAS airway/waypoint graph network 

3. Extracting the airway and waypoint data from the CIFP (Coded Instrument Flight Procedures) 

formerly known as the National Flight Database (NFD) 
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4. Generating the airspace connectivity model   

5. Implementation of the A* search  

6. Generating the nominal routes between the origin-destination pairs in the absence of adverse 

weather. 

A. Parsing the TRX file and CIFP Data 

The TRX file is used to identify the airport origin-destination pairs that are used in a particular 

scenario. A TRX file record contains the following information: 

 

TRACK DAL1598 B752 384800 1182000 484 370 0 ZOA ZOA33  

FP_ROUTE SFO./.SAC131031..LVZ.LENDY5.JFK/1131 

 

The data of interest are the origin and destination airport, shown in bold font in the example above. In 

this case, the origin airport is SFO and the destination airport is JFK. For this work, only the origin and 

destination airports are extracted; all other information in the TRX record is ignored. It is assumed that the 

first and last fixes in the FP_ROUTE line of a TRX record are the origin and destination airports. No 

validation is performed to determine if the first and last fix names correspond to airports or some other fix. 

The CIFP enroute airways data is used to create the airspace connectivity matrix and is available as an XML 

file with airway records. Each airway record contains a sequence of fixes which defines the route.  

B. Airspace Connectivity and A* Search 

The airspace connectivity matrix is formed by iterating over each airway in the global airways map. 

For each airway, the fix sequence is iterated over and a '1' is set in the connectivity matrix for each 

consecutive pair of fixes in the route. A general A* search algorithm [33-35] is used to find the shortest 

path between two nodes. The cost associated with each path can be proportional to the great-circle distance 

along a path, and the use of this cost function results in a shortest-distance route between two airports. If 

no wind profile is considered, the shortest-distance route and minimum time route are identical under the 

assumption of a constant airspeed in the enroute segment. Alternatively, by utilizing cruise airspeed 

information from BADA and wind forecast information from RUC, a wind-optimal search can be 

performed which results in a shortest-time route between two airports. An example of shortest-distance 

routes obtained using the framework described here is shown in Figure 2. It is worth noting that the A* 

search is one of many methods that can be used to generate routes. A comprehensive investigation of 

methods used in practice is beyond the scope of this paper. Even if they are not necessarily used in practice, 
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the routes obtained from the A* search are operationally feasible since they are constructed from the CIFP 

and are suited to the development of realistic scenarios in order to demonstrate optimized scheduling. 

C. Generation of Shortest Paths around Adverse Weather 

The A* search algorithm described above can be used to find shortest reroutes around adverse weather 

by performing the search on a modified graph. Assuming that the adverse weather is described by a polygon, 

all waypoints within the polygon and all airway segments intersecting the polygon can be removed. 

However, this method generates routes for all flights that skirt the adverse weather polygon closely creating 

congestion along the boundary of the polygon. In order to avoid congestion near the boundary, scaled 

versions of the adverse weather polygon can be used to generate multiple reroute options for every flight 

around the adverse weather as shown in Figure 3. Figure 4 shows the reroutes around the adverse weather 

polygons for all origin-destination airport pairs for all 35,000 flights in the TRX file for July 13, 2005. Note 

that the methodology handles multiple weather polygons and also both convex and non-convex polygons. 

In the latter case, waypoints lying outside the non-convex polygon but in the convex hull are not used 

because they will require an aircraft to turn back on its path. To avoid this operationally unrealistic scenario, 

non-convex weather polygons are replaced by their convex hull. 

III. Generation of Nominal and Unimpeded 4D Trajectories  

The present work utilized the Computational Appliance for Rapid Prediction of Aircraft Trajectories 

(CARPAT) software [36] for trajectory generation. CARPAT accepts flight demand data in the form of 

FACET [30] TRX or ACES [31] FDS files and can generate 4D trajectory predictions for 35,000 aircraft 

in the NAS over a 24-hour time horizon in less than 2.5 seconds. This is a significant acceleration over 

FACET-based simulations. CARPAT uses the ambient wind field from RUC and BADA [32] performance 

data for different aircraft types to generate accurate predictions. Multiple CARPAT trajectory predictions 

can be performed using minimum and maximum speeds from the BADA performance tables to obtain 1) 

earliest and latest entry times for every NAS resource and 2) minimum and maximum transit times for 

every resource. The trajectory predictor produces data required by the constraint generator, detailed in the 

next section. More specifically, an output of the predictor contains the earliest, latest, and nominal sector 

entry and exit times for each flight in the TRX file, which are obtained by simulating trajectories at the 

highest, lowest, and nominal groundspeed profiles, respectively. The outputs are grouped by alternative 

routes for each flight, and the groups are ordered by departure times. Within each group, the rows are 

ordered by the sequence in which the flight passes through each sector along its trajectory.  
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A significant advancement in this paper is the fact that due to the parallel nature of the unimpeded 

simulation over different flights, the data sets and constraints for each flight in the BLO model can also 

generated in parallel. Constraint generation for the optimization problem is discussed in the next section. 

IV. Description of the BLO Integer Program and Constraint Construction 

The BLO and AAEP models formulate the TFM problem in terms of the following optimization 

problem: 

      

min 𝑐⊤𝑥 

𝐴𝑥 ≤ 𝑏 

𝑥 ∈ {0,1} 

(1) 

Since the development of the optimization problem is largely the same in both [19] and [20], this paper 

uses the variable notation in the latter. The following sections describe the construction of the decision 

variables and the constraints. 

A. Decision Variable and Data Sets 

The variable of interest in IP formulation is denoted by 𝑥𝑓,𝑋𝑌
𝑡 , and is a binary variable, i.e. 𝑥𝑓,𝑋𝑌

𝑡 ∈

{0,1}. A value of 1 indicates that flight 𝑓 (member of set ℱ), reaches Node Y from Node X, by time interval 

𝑡 ∈ 𝒯 using an arc connecting the two nodes. Nodes X and Y belong to set 𝒩𝑓 that is composed of all nodes 

on the route(s) of flight 𝑓. The sets 𝒦𝑑 and 𝒦𝑎 denote the set of nodes corresponding to departure and 

arrival airports, respectively. Since an airport in general is both a departure as well as an arrival airport, 

𝒦𝑑 ∩ 𝒦𝑎 ≠ ∅. Let 𝑘𝑓
𝑑 ∈ 𝒦𝑑 and 𝑘𝑓

𝑎 ∈ 𝒦𝑎 denote departure and arrival airport nodes for flight 𝑓, 

respectively. Node 𝑞(𝑘𝑓
𝑑) denotes the departure airport boundary, and 𝑝(𝑘𝑓

𝑎) denotes the arrival airport 

boundary. The distinction between an airport node and its boundary node is noted in [20] and is used to 

construct an optimization problem which allows for a detailed model for ground holds and runway delays. 

For example, the difference between the actual and scheduled number of time units by which a flight arrives 

at the airport boundary is representative of the departure delay or amount of ground hold enforced on a 

flight. 

The arc 𝑋𝑌 is a member of set 𝒜𝑓 = {𝑋𝑌|𝑋, 𝑌 ∈ 𝒩𝑓} that is composed of all arcs on the route(s) of 

flight 𝑓. The set Γ𝑓
+(𝑋) = {𝑌|𝑋𝑌 ∈ 𝐴𝑓} and Γ𝑓

−(𝑋) = {𝑌|𝑌𝑋 ∈ 𝐴𝑓} are the set of nodes that have arcs from 

Node X and leading into Node Y respectively, for flight 𝑓. 

Whereas sets 𝒩𝑓 and 𝒜𝑓 denote all possible nodes and all possible arcs for flight 𝑓, the sets 𝒩𝑓
∗ ⊂ 𝒩𝑓 

and 𝒜𝑓
∗ ⊂ 𝒜𝑓 denote the nodes and arcs corresponding to the scheduled route of flight 𝑓. The variables 

𝑙𝑓,𝑋𝑌, 𝑟𝑓, and 𝑑𝑓 denote the travel time (number of time periods) for flight 𝑓 over arc XY, the scheduled 
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departure time period, and the scheduled arrival time period, respectively. It is noted in [20] that 

𝑙
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

= 𝑙
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎 = 0, ∀𝑘𝑓

𝑑 ∈ 𝒦𝑑 , 𝑘𝑓
𝑎 ∈ 𝒦𝑎 . In other words, a flight reaches the departure airport 

boundary immediately after leaving the departure airport node, and a flight reaches the arrival airport node 

immediately after leaving the arrival airport boundary. It also follows that 

      𝑟𝑓 = 𝑑𝑓 + ∑ 𝑙𝑓,𝑋𝑌  

𝑋𝑌∈𝐴𝑓
∗

 (2) 

In other words, the scheduled arrival time of the flight is given by the sum of the departure time and flight 

times along scheduled route segments. Furthermore, 𝑙𝑓,𝑋𝑌 and 𝑙𝑓,𝑋𝑌 denote the maximum and minimum 

number of time segments for flight 𝑓 on arc XY. 

The 0-1 BLO variables can be used to determine quantities of interest for TFM. For instance, the time 

segment in which the flight 𝑓 reaches node 𝑛 is denoted by 𝑇𝑓,𝑛 and given by the following summation: 

      𝑇𝑓,𝑛 = ∑ ∑ 𝑡(𝑥𝑓,𝑋𝑌
𝑡 − 𝑥𝑓,𝑋𝑌

𝑡−1 )

𝑡∈𝒯𝑋∈Γ𝑓
−(𝑌)

  (3) 

It follows from Eq. (3) that given the time of entry at a node and the time of entry at a preceding node, the 

number of time intervals required to travel on the arc connecting the nodes can be calculated. Additional 

quantities such as sector counts (given the arcs belonging to a sector) can also be calculated, as detailed in 

[19] and [20]. 

B. Constraint Formulation 

The variables are linked with constraints resulting from the spatio-temporal representation of the 

graph. The so-called flight structure constraints define the continuity in time and space for a flight. The 

temporal continuity constraints [20] are represented by the following linear inequalities and equalities: 

      
𝑥𝑓,𝑋𝑌

𝑡−1 ≤ 𝑥𝑓,𝑋𝑌
𝑡 , 𝑡 ∈ 𝒯𝑓,𝑋𝑌

∗ , (𝑋, 𝑌) ∈ 𝒜𝑓, 𝑓 ∈ ℱ 

𝑥𝑓,𝑋𝑌
𝑡−1 = 𝑥𝑓,𝑋𝑌

𝑡 , 𝑡 ∈ 𝒯𝑓,𝑋𝑌 ∖ 𝒯𝑋𝑓,𝑌
∗ , (𝑋, 𝑌) ∈ 𝒜𝑓, 𝑓 ∈ ℱ 

(4) 

where 𝒯𝑓,𝑋𝑌
∗  is the set of feasible time units in which a flight 𝑓 can reach Node Y from Node X over the arc 

connecting the two nodes, and 𝒯𝑓,𝑋𝑌 is the smallest set of consecutive time intervals that contains 𝒯𝑓,𝑋𝑌
∗ . 

These constraints state that if a flight was in node 𝑋 by time period 𝑡, then this must also hold true for any 

later time period 𝑡′ > 𝑡. 

The spatial continuity constraints [20] are given by the following inequalities: 
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∑ 𝑥𝑓,𝑌𝑍

𝑡+𝑙𝑓,𝑌𝑍

𝑍∈Γ𝑓
+(𝑌)

≤ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)

≤ ∑ 𝑥𝑓,𝑌𝑍

𝑡+𝑙𝑓,𝑌𝑍

𝑍∈Γ𝑓
+(𝑌)

,

𝑡 ∈ 𝒯𝑓,𝑌 , 𝑌 ∈ 𝒩𝑓\{𝑘𝑓
𝑑 , 𝑘𝑓

𝑎}, 𝑓 ∈ ℱ  

(5) 

In the foregoing, 𝒯𝑓,𝑌 denotes the set of all times units by which a flight 𝑓 can reach Node Y from any other 

node along the route of that flight. Spatial continuity constraints force connectivity through a node.   

The third set of constraints is composed of those that are derived from airspace capacity. To formulate 

the problem with capacity constraints, the sets 𝒩𝑓
𝑗+

 and 𝒩𝑓
𝑗−

 are defined for a flight 𝑓 in the 𝑗th sector, as 

the set of nodes entering and leaving the 𝑗th Sector. The sector capacity constraints are given by the 

following [20]: 

      ∑ [ ∑ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)𝑌∈𝒩𝑓

𝑗+

− ∑ ∑ 𝑥𝑓,𝑋𝑌
𝑡

𝑋∈Γ𝑓
−(𝑌)𝑌∈𝒩𝑓

𝑗−

]

𝑓∈ℱ

≤ 𝑆𝑗
𝑡 , 𝑡 ∈ 𝒯, 𝑗 ∈ 𝒥 (6) 

The foregoing equation counts the number of flights entering Sector 𝑗 at time 𝑡, and subtracts from it, the 

number flights leaving the Sector at that time. This number is constrained to be less than the Sector capacity 

at that time, 𝑆𝑗
𝑡, for a Sector 𝑗 ∈ 𝒥. Similar capacity constraints can be derived for airport arrival and 

departure capacity, but were not used in this work. Mechanisms to include arrival and departure capacity 

constraints are described in [17], which can also explicitly model scenarios where the arrival and departure 

capacity constraints are dependent on each other due to simultaneous operation on the same runways.  

C. Cost Function Formulation 

In the BLO model, the cost 𝐽 has contributions from different components, depending on the modeling 

requirements of the problem. A comprehensive list is presented in [20], which not only includes the 

components presented in [19], but also introduces additional terms for greater flexibility in formulating 

TFM problems. In this work, the number of cancelled flights, overall flight ground delays, and airborne 

delays were penalized. These three cost function components, denoted by 𝐽cancel, 𝐽ground , and 𝐽airborne, are 

listed as follows: 

      𝐽cancel = − ∑ 𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡

𝑓∈ℱ

, 𝑡 = max 𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

 (7) 

 
𝐽ground = ∑ ∑ 𝑐𝑓,𝐺(𝑡) (𝑥

𝑓,𝑘𝑓
𝑑 ,𝑞(𝑘𝑓

𝑑)

𝑡 − 𝑥
𝑓,𝑘𝑓

𝑑 ,𝑞(𝑘𝑓
𝑑)

𝑡−1 ) 

𝑡∈𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑓∈ℱ

 
(8) 
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𝐽airborne = ∑ [ ∑ 𝑐𝑓,𝑇(𝑡) (𝑥
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎

𝑡 − 𝑥
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎

𝑡−1 ) 

𝑡∈𝒯
𝑓,𝑝(𝑘𝑓

𝑎),𝑘𝑓
𝑎𝑓∈ℱ

− ∑ 𝑐𝑓,𝐺(𝑡) (𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡 − 𝑥
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

𝑡−1 ) 

𝑡∈𝒯
𝑓,𝑘𝑓

𝑑,𝑞(𝑘𝑓
𝑑)

] 

(9) 

where 𝑐𝑓,𝑇(𝑡) = 𝑐𝑇 ⋅ (𝑡 − 𝑟𝑓) and 𝑐𝑓,𝐺(𝑡) = 𝑐𝐺 ⋅ (𝑡 − 𝑑𝑓) (with constant 𝑐𝑇  and 𝑐𝐺) are coefficients such 

that each additional unit of delay from scheduled arrival and departure has a proportionately heavier penalty. 

Alternative formulations include the so-called superlinear cost function [19] with additional penalty on 

larger delays. Computational experiments described in [19] have shown that this results in a more equitable 

distribution of delays over the set of flights. It should be noted that although the cost function coefficients 

can be functions of the time unit, they are not functions of the decision variables, and consequently, the 

resulting cost function is still linear as shown in Eq. (1). 

 

V. Solution using Parallelized Dantzig-Wolfe Decomposition 

Prior work described in [23] shows that the BSP model exhibits the so-called primal block structure 

[37], which is shown Figure 5. This structure is also exhibited by the BLO model and the constitution of 

the blocks is discussed in Section V.A. The implementation details on parallel and high-performance 

computers are discussed in Section V.B. Nationwide TFM examples and computational experience for these 

problems are discussed in Section V.C. 

A. Dantzig-Wolfe Structure 

With reference to Figure 5, the constraints of the LP can be divided into master problem blocks 𝐷1  

through 𝐷𝑛, and sub-problem blocks 𝐹1 through 𝐹𝑛, where 𝑛 is the number of flights in the simulation.  In 

other words, the LP can be written in the following form: 

      

min 𝑐1
⊤𝑥1 + 𝑐2

⊤𝑥2 + ⋯ 𝑐𝑛
⊤𝑥𝑛 

𝐷1𝑥1 + 𝐷2𝑥2 + ⋯ + 𝐷𝑛𝑥𝑛 = 𝑏𝐷 

𝐹1𝑥1 = 𝑏𝐹1
 

𝐹2𝑥2 = 𝑏𝐹2
 

⋮ 

𝐹𝑛𝑥𝑛 = 𝑏𝐹𝑛
 

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0 

(10) 
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where the variable set 𝑥𝑓 consist of all variables 𝑥𝑓,𝑋𝑌
𝑡  for a flight 𝑓 ∈ ℱ in the simulation. The master 

problem constraints composed of block matrices 𝐷1 through 𝐷𝑛 consists of constraints that relate the 

variables of multiple flights, and are composed of capacity constraints shown in Eq. (6). The sub-problem 

constraints composed of block matrices 𝐹1 through 𝐹𝑛 consist of spatio-temporal constraints of individual 

flights and only relate variables associated with a single flight each, as shown in Eqs. (4) and (5). Note that 

in the foregoing equation the general LP form is assumed for the optimization problem, in which all 

constraints are equality constraints and inequalities are converted to equalities using slack, surplus, and 

artificial variables. 

Let 𝑃𝑓 = {𝑥𝑓|𝐹𝑓𝑥𝑓 = 𝑏𝑓, 𝑥𝑓 ≥ 0}. This set denotes the feasible values for the variables for the 𝑓th 

flight and can be rewritten as a convex combination of its extreme points and rays. In the context of the 

BLO formulation, the feasible region is bounded since all variables are bounded in the region [0,1], and as 

a consequence, 𝑃𝑓 can be expressed as a convex combination of extreme points only. Let the extreme points 

of 𝑃𝑓 be denoted by 𝑥𝑓
𝑗
, where 𝑗 ∈ 𝒥𝑓 and 𝒥𝑓 is the set of indices iterating over the extreme points.  The 

monolithic problem shown in Eq. (10) is rewritten as the so-called master program: 

      

min ∑ ∑ 𝜆𝑓
𝑗
𝑐𝑓

⊤𝑥𝑓
𝑗

𝑗∈𝒥𝑓𝑓∈ℱ

  

∑ ∑ 𝜆𝑓
𝑗
𝐷𝑓𝑥𝑓

𝑗

𝑗∈𝒥𝑓𝑓∈ℱ

= 𝑏𝐷 

∑ 𝜆𝑓
𝑗

𝑗∈𝒥𝑓

= 1, ∀𝑓 ∈ ℱ 

𝜆𝑓
𝑗

≥ 0, ∀𝑗 ∈ 𝒥, 𝑓 ∈ ℱ 

(11) 

where  𝜆𝑓
𝑗
 are decision variables. 

Let the number of rows in the master problem blocks 𝐷1,…𝑛 be denoted by 𝑚0 and the number of rows 

in each sub-problem block be denoted by 𝑚1,…,𝑛. Then, the number of constraints in the monolithic form 

of the problem shown in Eq. (10) is equal to 𝑚0 + ∑ 𝑚𝑓𝑓∈ℱ , whereas the master program shown in Eq. 

(11) consists of 𝑚0 + 𝑛 constraints. The BLO formulation constraints are such that 𝑚0 is significantly 

smaller than the number of monolithic constraints; however this is achieved by using an exponentially 

larger number of variables which correspond to the extreme points of all the sub-problems. 

The advantage of the DW decomposition is that in spite of a large number of variables, at any given 

simplex iteration of the master program, a vast majority of the variables 𝜆𝑓
𝑗
 are zero and their corresponding 

columns in the master program simplex tableau are not used. By utilizing a process called delayed column 
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generation, only potentially useful columns are added to the master program iteration. Details of the 

algorithm can be found in [25,29] and are summarized here. 

Dual variables are associated with the master problem constraints, of which 𝑚0 dual variables, denoted 

by 𝜎, correspond to the capacity constraints, and 𝑛 dual variables, denoted by 𝜋1,…,𝑛, correspond to the 

convexity constraints for the 𝑛 sub-problems. In the revised simplex tableau, the dual variables are obtained 

directly from the row of reduced costs. The 𝑓th sub-problem consists of the LP min  (𝑐𝑓
⊤ − 𝜎⊤𝐷𝑓)𝑥𝑓 , 𝑥𝑓 ∈

𝑃𝑓. If the optimal cost to this problem is less than 𝜋𝑓, then the optimal solution is an extreme point, and a 

column [(𝐷𝑓𝑥𝑓
𝑗
)

⊤
  𝑒𝑓

⊤ ]
⊤

 is generated, where 𝑒𝑓  is a vector of length 𝑛 consisting of zeros everywhere 

except for the 𝑓th entry, which is equal to 1. If the optimal cost is no less than 𝜋𝑓 , no column is generated. 

Since the BLO variables are bounded, the optimal cost is always finite. The master problem reaches 

optimality when no columns are generated by any sub-problem. 

Of importance is the fact that the 𝑓th sub-problem consists only of constraints given by the matrix 𝐹𝑓, 

and the solution to one sub-problem does not depend on the solutions to the other sub-problems. This 

motivates the use of parallel implementations of the DW decomposition.  

B. Parallel Implementation on Multithreaded, Multicore, and High-Performance Computers 

Parallelized implementation of the DW decomposition is achieved at two levels. In the first, “coarse” 

level of parallelization, each sub-problem is solved independently. A simplex tableau is created for every 

sub-problem and the pivoting operations on each tableau are executed in parallel. Constraint elimination is 

performed simultaneously with constraint generation for each sub-problem, in order to reduce the problem 

size. Single-variable inequalities and equalities are converted to variable bounds and fixed variables, 

respectively. Fixed variables are then removed from constraints. If a master problem constraint is such that 

it only involves variables from a single sub-problem, it is assigned to the corresponding sub-problem block 

matrix. Finally, redundant capacity constraints are removed by utilizing variable bounds, since all variables 

are bounded. The foregoing steps are repeated until the number of constraints does not change. 

The process of sub-problem tableau generation is performed in parallel since the construction steps for 

one sub-problem do not require access to computer memory containing information of the other sub-

problems. Parallel thread management on CPUs is performed using the Open Multi-Processing (OpenMP) 

framework, which uses compiler directives to assign a separate thread to the optimization of each sub-

problem. On GPUs, parallelized code is developed using the Compute Unified Device Architecture 

(CUDA) framework, and parallel processes are invoked using CUDA ‘kernels’. The CUDA compiler 

launches a separate kernel thread for each sub-problem in parallel. 
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 The number of cores offered by GPUs is significantly larger; however they typically have a lower 

clock speed than CPUs. For example, the NVIDIA™ Titan GPU offers 2688 cores operating at 732 MHz, 

whereas an Intel® Xeon® processor family typically offers 2 cores with 12 concurrent threads each, 

operating at 2.4 GHz. 

The second, “fine” level of parallelization is achieved at the simplex iteration stage. As noted before, 

the research in this paper utilized a two-phase, bounded, revised simplex algorithm. Details of the simplex 

method are given in [28]; it is sufficient to note here that the two-phase solver is aimed at addressing 

problems where an initial basic feasible solution from which simplex iterations are initiated, may not exist. 

For example, if the problem consists of constraints where 𝐴𝑔𝑥 ≥ 𝑏𝑔 > 0, then 𝑥 = 0 is no longer an initial 

basic feasible solution, and the first phase of the solver identifies such a solution using artificial variables, 

and the second phase of the solver iterates on the basic feasible solution to achieve an optimal solution. The 

bounded simplex method explicitly models variable bounds, and does not pose them as constraints. This is 

useful from the perspective of the BLO model because every variable in the LP relaxation is bounded 

between 0 and 1, and adding these bounds would increase the number of constraints by the number of 

variables in the problem. The revised simplex algorithm differs from the regular simplex algorithm in that 

the tableau only consists of columns from the current basis at any iteration. While this can require additional 

computations at every iteration to generate the column corresponding to leaving variables, the memory 

requirement is significantly reduced. This approach is useful when the number of variables in the problem 

is significantly larger than the number of constraints; in this case the simplex method only requires storage 

for a square tableau matrix whose dimension is equal to the number of constraints.  

The use of the revised simplex algorithm is motivated by the fact that the master program defined in 

Eq. (11) has an exponentially large number of variables but a significantly smaller set of constraints in 

comparison with the monolithic problem. Although the simplex algorithm is sequential in nature, fine-grain 

parallelization is used to perform simultaneous pivoting of all rows and the calculation of the reduced costs, 

within each sub-problem. Fine grain parallelization generally cannot be implemented in the CPU 

architecture but the CUDA framework on GPUs allows for the launch of sub-kernels from kernels, 

exploiting the large number of cores. 

C. Computational Experience for NAS-Wide TFM Problems 

The foregoing sections describe the different steps utilized to transcribe flight demand data into an 

optimization problem for the solver. This section describes the application of this approach to two use cases 

and discusses the computational experience for both problems. It should be noted at the outset that in both 

examples, the LP solution was exactly integral. Strength of the LP relaxation for very large problems has 

been noted in [23]. 
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East Coast Flights 

This example consists all flights arriving and departing in the eastern region of the continental United 

States in the 24 hour period on July 30, 2005. There are 4,366 flights in this simulation, and at a resolution 

of 3 minutes the resulting monolithic problem has 976,203 variables and 1,292,646 constraints. Of this, the 

master problem blocks are composed of 15,209 constraints, and the sub-problems consist of 224 variables 

and 293 constraints on an average. When decomposed, the variables and constraints for each flight 

constitute a separate sub-problem. Sector Monitor Alert Parameter (MAP) values were chosen as capacity 

constraints in this example, and the maximum amount of delay allowed by any flight was 25 minutes. 

The problem described here is significantly larger than those described in [23] or later works 

demonstrating GPU-based decomposition [26], namely in terms of the number of master problem 

constraints. An attempt was made to reduce the number of constraints by removing inactive constraints but 

this approach does not work well for diverse schedules over a large time frame. In order to ensure that there 

is only one optimal solution, flights departing from and arriving at the same airport were assigned priorities 

based on their desired departure time, which was then used to scale their respective cost function 

coefficients. 

The execution time on an Intel Xeon processor with 24 maximum concurrent threads at 2.4 GHz, and 

an NVIDIA Titan GPU with 2,688 cores at a clock speed of 732MHz is shown in Figure 6. A comparison 

is made with the wall clock time of dwsolver [23]; which also utilizes multithreading together with GLPK. 

Results are also verified against those obtained from dwsolver. No capacity constraints were found to be 

active due to the restricted geographical area, and the computation time is therefore equivalent to the amount 

of time required to optimize the sub-problems. A comparison with a monolithic problem was not pursued 

due to the infeasible time and memory requirements of the latter problem. Comparisons with restricted-

license optimization software were also not performed but such comparisons are shown in [23]. 

Figure 6 shows that an OpenMP implementation of the multithreaded decomposition problem 

performs significantly better than the GPU implementation. It also shows an approximately 3 × 

acceleration over dwsolver. The fastest execution time for a problem of this size is 15 seconds.  

Parallelization on GPUs, both at the coarser level of sub-problem assignment and at the finer level of 

pivoting operations, produces best results when the operation is data parallel as well as task parallel. While 

the TFM problem is task-parallelizable at a coarse level due to sub-problem independence, the only 

circumstance under which it is also task-parallelizable and data-parallelizable at a finer level is when every 

thread requires the same amount of memory and the same number of computational steps. The flights in a 

realistic example are all of different durations and lengths due to the diversity of flight lengths in the NAS. 

Consequently, the number of variables and constraints utilized to model a flight’s trajectory can show 

significant variance. Not only does this result in each sub-problem simplex tableau requiring different 
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amounts of memory, each sub-problem also requires a different number of steps to reach optimality and to 

generate the column for the entering variables in the master program. Therefore, the GPU is not able to 

leverage parallelization at a level beyond that of separate sub-problem assignment and its overall 

performance is impacted by the relatively slower clock speed in comparison with CPUs. Only in the special 

case of identical flights does the GPU perform significantly better than a multithreaded CPU. In this case, 

acceleration of up to 9× was observed using the GPU-based solver, and for smaller problems larger 

acceleration values have been reported [26]. The fact that realistic problems, including the ones presented 

here, do not adhere to this ideal is also exhibited by the flattening of the execution time curve as a function 

of the number of concurrent threads in Figure 6. Although replicated flight examples are not expected in 

the real world, they can appear as a result of experiments which require stochastic analysis using Monte 

Carlo simulations. The GPU -based solver is beneficial for these problems. 

Metro Flights 

This example consists of all flights arriving and departing into one of the 40 major airports in the NAS. 

As shown in the previous example, a discrete interval of 3 minutes was chosen over a 24 hour period on 

July 30, 2005. This example consists of 8,522 flights or sub-problems. The total number of variables 

resulting from the BLO formulation is 2,149,850, and the total number of constrains is 2,832,558. Of these, 

the master problem consists of 34,668 constraints. On an average, each sub-problem consists of 252 

variables and 328 constraints, which is of the same order as the sub-problems in the previous example. 

However, the number of sector capacity constraints is more than double the number of constraints modeled 

in the East Coast example and indicates the larger number of sectors in which capacity is enforced. This 

problem consists of 907 unique sectors in which capacity constraints (MAP values) are enforced, and 

constitutes a significant portion of the NAS. As an indicator of the size of the problem, the frequency of the 

number of flights which have a given number of links is shown in Figure 7.  In this example, the route of a 

flight is discretized such that a link connects an entry and exit node at a sector along the route of a flight. 

Arbitrary weather polygons as shown in Figure 4 were introduced in this example, and as a consequence, 

some flights have up to 3 alternative routes.  

Optimization results show that approximately 2% of the flights were delayed by 2 time units and less 

than 1% of the flights were delayed by 3 time units. Since airborne delays are made to incur a larger penalty 

than ground delays, all the delays observed appeared on the ground. The appearance of delays shows that 

some of the capacity constraints are active, which is also indicated by a small number of master problem 

iterations. These do not contribute significantly to the computation time. Execution time for this problem 

as a function of the number of threads is shown in Figure 8. The best-case performance is observed to be 

28 seconds, which also represents a speedup of approximately 3 × over dwsolver. In this case too, the 

multithreaded CPU implementation is a significant improvement over the GPU implementation due to the 
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causes mentioned in the previous example. As noted in Figure 7, the distribution of sub-problem size shows 

a relatively large variance in comparison with the mean. For geographically-restricted problems, the 

variance may be smaller and as a consequence, each sub-problem may be of similar size, but the number 

of steps required for the simplex algorithm to reach an optimal solution to the sub-problems can be different.   

It is worth noting that the revised simplex formulation pursued in this paper required approximately 

11% of the memory utilized by the GLPK-based DW decomposition (5GB in comparison with 45GB). 

Larger examples could not be tested due to a 6GB limit on the NVIDIA Titan card used in this research.  

VI. Conclusions 

This paper describes an end-to-end system for TFM optimization, inputs to which are the nominal 

flight schedules in standard format (e.g. TRX files), and the outputs are the optimized schedules which 

account for airspace capacity constraints. The approach considers the possibility of multiple routes due to 

weather-avoidance strategies and shows acceleration over the state-of-the-art solutions. The acceleration 

can be as high as 9× that of dwsolver when the sub-problems in the DW decomposition are data-parallel, 

i.e. all sub-problems require the same amount of memory and execute the same number of simplex 

iterations. However, in real-world examples in which the number of variables and constraints can vary over 

the different flights in the simulation, the OpenMP-based multi-threaded implementation on CPUs is 

significantly faster than GPU implementation. Performance is also impacted by the large number of master 

problem constraints when considering realistic, NAS-wide problems. In this case, the CPU implementation 

shows an acceleration of 3× over dwsolver whereas the GPU implementation is slower than dwsolver. It 

should also be noted that in a NAS-wide example consisting of 8,522 flights from the 40 major US airports, 

the approach presented in this paper requires approximately 11% of the memory required by dwsolver. In 

the best case the nationwide, 40 major-airport problem for a 24-hour schedule at a resolution of 3 minutes, 

was solved in 28 seconds.  

Research has yielded considerable insight in the parallel nature of LP solvers and other optimization 

methods. For instance, the use of a system with multiple GPUs to surmount memory limitations and to 

address larger problems is an avenue of future research. While the simplex method is well-suited to the 

Dantzig-Wolfe decomposition, there is evidence in the literature supporting the use of Interior Point 

methods. The latter category may offer certain advantages over simplex. For example, it was observed that 

the GPU implementation is impacted when the sub-problems do not execute the same number of steps. 

While the simplex can be terminated at a fixed number of steps, this approach is generally arbitrary and 

provides no guarantees on the optimality of the solution. On the other hand, interior point methods can 

provide an estimate of the duality gap which is an indicator of solution optimality when calculations are 

terminated after a fixed number of iterations. Assessing the use of other types of optimization techniques is 
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therefore a useful exercise. The generic nature of the solver and decomposition itself lends itself to a large 

variety of schedule optimization problems in different industries. More specifically, the approach shows 

promise for the integrated arrival and departure scheduling problem in the terminal area and airport surface. 

The computation times observed in the examples suggest guidelines for selecting the time horizon and 

resolution for applications in this domain.  
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Figure 1. Conceptual Overview of the Traffic Flow Optimization Tool 
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Figure 2. Shortest Routes between Origin-Destination Airport Pairs Generated by the A* Search  



 
 

 

American Institute of Aeronautics and Astronautics 
 

 

22 

 
Figure 3. Generation of Alternate Reroutes Given the Adverse Weather Polygon 
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Figure 4. Reroutes Around Multiple Adverse Weather Polygons in the NAS 

 

 

Figure 5. Primal Block Angular Structure of the TFM Constraint Matrix 
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Figure 6. Execution Time Trend as a Function of OpenMP Threads for The East Coast Example 
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Figure 7. Distribution of the Number of Links Constituting a Flight’s Path in the Metro Airport 

TFM Example 
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Figure 8.  Execution Time Trend as a Function of OpenMP Threads for The 40-Airport Example 

 

 


