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Abstract This paper presents a method for the truncation of infinite Fourier-Bessel representations
for functions requiring a solution to Kepler’s equation. Use is made of the Lambert W function to solve
for the desired index that bounds the remainder terms of the series, within the prescribed tolerance.
The enforcement of a maximum on the number of Bessel functions is also useful in truncating the Bessel
functions themselves, resulting in an analytical representation of the solution to a desired tolerance,
without the use of infinite series.
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1 Introduction

The Lambert W function (Corless et al. 1996) is defined as the multivalued inverse of the following
function:

W(z) exp[W(z)] = z (1)

As shown by Corless et al. (1996), this function has several uses in physical and engineering applications.
Recent work by Galidakis (2004) shows how the W function also has uses in testing convergence
properties of infinite exponentials. It is therefore a natural extension that several results for the W
function can also be used in series solutions resulting from an analysis of Kepler’s equation (Colwell
1993).

2 Keplerian Anomalies and Kepler’s Equation

The Kepler anomalies are quantities that are used to calculate the position of an orbiting body, in
a central gravity field. The equation of the conic is given by r = aη2/(1 + e cos f), where r is the
current radial distance of the satellite, a is the semimajor axis, η =

√
1− e2, e is the eccentricity of

the orbit, and f is the true anomaly. The conic equation is also given by r = a(1− e cosE), where E is
the eccentric anomaly. The true and eccentric anomalies are related by the following equation (Battin
1999):

tan
f

2
=

√
1 + e

1− e
tan

E

2
(2)

The satellite’s orbit is dependent on time since epoch through the mean anomaly, M = M0 + n∆t,
where M0 is the mean anomaly at epoch, n =

√
µ/a3, and ∆t is the elapsed time. However, the
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dependence is not explicit, and is given by the following transcendental equation, known as Kepler’s
equation:

M = E − e sinE (3)

Equation (3) has no known closed-form solution. However, this equation is amenable to numerical
methods and solutions based on infinite series, the details of which are given in Colwell (1993). In
some cases, a function is used to represent the iterative solution to Kepler’s equation; for example,
the nesting function used by Ketema (2005). However, the numerical methods do not lend themselves
readily to characterization of the solution in a functional form, while the series solutions, at the
first glance, appear to require an infinite number of terms, which are computationally impossible to
generate. Mathematical operations also cannot be performed on the nesting function, since it represents
an iterative procedure to obtain the solution to Kepler’s equation and not the solution itself.

Many engineering applications related to orbital mechanics require time-explicit formulation of
quantities that are also valid for arbitrary eccentricities. For example, the STMs for relative motion
derived by Carter (1998); Yamanaka and Ankersen (2002); Sengupta et al. (2007) are formulated using
the true anomaly, and for application purposes, require a conversion from time (mean anomaly) to
true anomaly, using numerical techniques. A series representation of the functions of true anomaly, in
terms of mean anomaly, would result in and infinite number of terms with coefficients based on Bessel
functions. While the series may be terminated, it is not known a priori how many terms are required,
or at what point the series may be terminated, without checking for convergence within numerical
tolerance.

Typically, series solutions are truncated at a prescribed order of eccentricity. For example, Melton
(2000) derived a time-explicit state transition matrix (STM) for relative motion, that was correct
through the second order in eccentricity. These methods are also used in cases other than two-body
motion; for example, Richardson and Cary (1975) employed a first-order expansion in eccentricity
to design Lissajous orbits around the collinear libration points in the elliptic restricted three-body
problem. However, truncating the series at a given order of eccentricity does not reveal the order of
the resulting error, or the region of validity, unless compared with numerical simulations that include
the full effects of eccentricity.

In this paper, it is shown that the Lambert W function can be used to truncate series solutions to
Kepler’s equation. In particular, the minimum number of terms required to reduce the contribution of
higher order terms within the desired tolerance, is obtained from the solution of this function. Further-
more, the accuracy of the solutions when terms beyond a certain order of eccentricity are ignored, can
also be obtained. It is worth noting that the number of operations required to calculate series solutions
can be very large in comparison to most modern-day algorithms (Mortari and Clocchiatti 2006). While
for the combination of moderate-to-high eccentricity and high numerical accuracy the series solutions
(infinite or finite) are not expected to be particularly useful, they can provide qualitative expressions
for algebraic manipulation.

3 Series Representation and Truncation

In this section, the theory used to obtain the upper bound is outlined, by demonstrating the procedure
on an example. The technique is easily extended to obtain the expansion of any function of the true
or eccentric anomalies in terms of the mean anomaly.

3.1 Expansion of the Eccentric Anomaly

The series expansion of the eccentric anomaly is considered. It is known that (Colwell 1993; Battin
1999):

E = M + 2
∞∑
k=1

1
k
Jk(ke) sin kM (4)
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where Jk is the kth-order Bessel function of the first kind (Abramowitz and Stegun 1972), given by
the following series:

Jk(x) =
∞∑
j=0

(−1)j
(x/2)k+2j

j! (k + j)!
(5)

Watson (1966) has shown that:

|Jν(νx)| ≤ exp [−ν F (0, x)]
(1− x2)1/4(2πν)1/2

(6)

where

F (θ, x) = ln
[
θ + (θ2 − x2 sin2 θ)1/2

x sin θ

]
− (θ2 − x2 sin2 θ)1/2 cot θ (7)

Since F (θ, x) is continuous, (7) may be evaluated at θ = 0 by calculating the limit as shown below:

F (0, x) = lim
θ→0

F (θ, x) = ln

[
1 +
√

1− x2

x

]
−
√

1− x2 (8)

Using ν = k, x = e, and (8) in (6) and (7), the following inequality is obtained:

|Jk(ke)| ≤ εk exp(kη)√
2πη k

(9)

where

η =
√

1− e2 (10a)

ε =
√

1− η
1 + η

(10b)

Let ξ = ε exp η. It can be shown that 0 ≤ ξ ≤ 1, by using the following result:

ln (ε exp η) =
1
2

[ln(1− η)− ln(1 + η)] + η = −
[

1
3
η3 +

1
5
η5 + · · ·

]
or, −∞ ≤ ln ξ ≤ 0 (11)

Equation (9) is the basic inequality used to find truncations to Fourier-Bessel series. Let kmax be
the index at which the series in (4) is truncated. Consequently, the sum of the terms with indices
k > kmax must satisfy the following inequality:∣∣∣∣∣2

∞∑
k=k∗

1
k
Jk(ke) sin kM

∣∣∣∣∣ ≤ 10−Ntol (12)

where k∗ = kmax + 1, and Ntol ∈ Z+ is a number indicating the desired numerical tolerance. Using (9),
the sum of the series in (12) is bounded as follows:∣∣∣∣∣2

∞∑
k=k∗

1
k
Jk(ke) sin kM

∣∣∣∣∣ ≤ 2
∞∑

k=k∗

1
k
|Jk(ke)|

≤ 2√
2πη

∞∑
k=k∗

ξk

k3/2

=
2√
2πη

ξk
∗
[

1

k∗3/2
+

ξ

(k∗ + 1)3/2
+

ξ2

(k∗ + 2)3/2
+ · · ·

]
≤ 2√

2πη
ξk

∗
[

1

k∗3/2
+

ξ

k∗3/2
+

ξ2

k∗3/2
+ · · ·

]
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or,

∣∣∣∣∣2
∞∑

k=k∗

1
k
Jk(ke) sin kM

∣∣∣∣∣ ≤ 2√
2πη

ξk
∗

k∗3/2
1

(1− ξ)
(13)

The value for the index k∗ may then be obtained by solving the following equation:

2√
2πη

ξk
∗

k∗3/2
1

(1− ξ)
= 10−Ntol (14)

Applying the natural logarithmic operator to both sides, the following equation is obtained:

c1k
∗ + c2 ln k∗ = c3 (15)

where

c1 = − ln ξ (16a)

c2 =
3
2

(16b)

c3 = Ntol ln 10 + ln
2√

2πη(1− ξ)
(16c)

Equation (15) is rewritten as: (
c1
c2
k∗
)

exp
(
c1
c2
k∗
)

=
c1
c2

exp
(
c3
c2

)
(17)

In (17), let (c1/c2) exp(c3/c2) = z, and (c1/c2) k∗ = W(z). Comparing (17) with (1), it follows that
k∗ can be obtained from the Lambert W function. Since only integer values of k∗ are of interest, the
following is obtained as the solution to kmax:

kmax = dk∗e − 1 =
⌈(

c2
c1

)
W
(

exp
(
c3
c2

)
c1
c2

)⌉
− 1 (18)

where d·e denotes the ceiling function. Consequently, if an analytical representation for E, in terms of
M , is required, such that |E −M | ≤ 10−Ntol , then,

E ≈M + 2
kmax∑
k=1

1
k
Jk(ke) sin kM (19)

where kmax is given by (17) and (16), and is dependent only on the desired tolerance Ntol and the
eccentricity e. Equation (19) allows operations such as symbolic integration or differentiation, and is
also numerically exact within the desired tolerance.

3.2 Generalization of the Result

Series expansions of E or f in terms of M are typically composed of either Jk(ke) or J ′k(ke), where
( ′ ) denotes a derivative with respect to e, and harmonics of kM . Therefore, the following two series
are considered:

a = q

∞∑
k=1

1
kp
Jk(ke) exp(ıkM) (20a)

b = q

∞∑
k=1

1
kp
J ′k(ke) exp(ıkM) (20b)

where ı =
√
−1, p, q ∈ R, p ≥ 0, and q > 0. For example, the expansions of cos f and sin f in terms of

the mean anomaly, as shown in Battin (1999), are special cases of (20a) and (20b), respectively:

cos f = −e+
2η2

e

∞∑
k=1

Jk(ke) cos kM (21a)
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sin f = 2η
∞∑
k=1

1
k

d

de
Jk(ke) sin kM (21b)

Let ak and bk denote the kth term of the series in (20). From Watson (1966), a bound for J ′k(ke) is
obtained as follows:

|J ′k(ke)| ≤ (1 + e2)1/4

e
√

2π

√
k ξk (22)

From (9) and (22), it follows that

a∗k ,

∣∣∣∣∣
∞∑

k=k∗

ak

∣∣∣∣∣ ≤ |q|√
2πη

∞∑
k=k∗

ξk

k(p+1/2)
≤ |q|√

2πη(1− ξ)
ξk

∗

k∗(p+1/2)
(23a)

b∗k ,

∣∣∣∣∣
∞∑

k=k∗

bk

∣∣∣∣∣ ≤ |q|(1 + e2)1/4

e
√

2πη

∞∑
k=k∗

ξk

k(p−1/2)
≤ |q|(1 + e2)1/4

e
√

2πη(1− ξ)
ξk

∗

k∗(p−1/2)
(23b)

The maximum index for truncation is obtained by solving either a∗k = 10−Ntol or b∗k = 10−Ntol ,
depending on the series used. This results in the following equation:

cek
∗ + cp ln k∗ = cN (24)

where

ce = − ln ξ (25a)

cp =
{(

p+ 1
2

)
, a∗k = 10−Ntol(

p− 1
2

)
, b∗k = 10−Ntol

(25b)

cN =

{
Ntol ln 10− ln(1− ξ) + ln

(
|q|/
√

2πη
)
, a∗k = 10−Ntol

Ntol ln 10− ln(1− ξ) + ln
(
|q|(1 + e2)1/4/

√
2πe2

)
, b∗k = 10−Ntol

(25c)

It should be noted that when p = 1/2 for the series a, or p = −1/2 for the series b, kmax in both cases
is given trivially by:

kmax = dk∗e − 1 =
⌈(

cN
ce

)⌉
− 1 (26)

In all other cases

kmax =
⌈(

cp
ce

)
W
(

exp
(
cN
cp

)
ce
cp

)⌉
− 1 (27)

Corless et al. (1997) present several methods to evaluate the LambertW function in an efficient manner;
however, a second-order Newton-Raphson correction, that is found sufficient for q = 1, e ≤ 0.99, p < 4,
and Ntol ≤ 15, is given by:

kmax =

⌈
cN
ce

{
1− 2cp(cN + cp) ln (cN/ce)[

2(cN + cp)2 + c2p ln (cN/ce)
]}⌉− 1 (28)
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3.3 Truncation of Bessel Functions

The truncation introduced by the index kmax to reduce errors within a prescribed tolerance also suggests
that the Bessel functions Jk(ke) need not be evaluated as an infinite series. Following the approach
in the previous section, the magnitude of terms comprising j > s in (5) is considered. The truncated
Bessel function Jsk(x) is defined as follows:

Jsk(x) =
s∑
j=0

(−1)j
(x/2)k+2j

j! (k + j)!
(29)

Since the Bessel function (and its derivatives) is a hypergeometric series with alternating sign, the
remainder due to truncation at j = s is bounded by the magnitude of the (s + 1)th term (Du et al.
2002): ∣∣∣∣∣∣

∞∑
j=s∗

(−1)j
(x/2)k+2j

j! (k + j)!

∣∣∣∣∣∣ ≤ (x/2)k+2s∗

s∗! (k + s∗)!
(30)

where s∗ = s+ 1. From Stirling’s approximation,

s∗! ≈
√

2πs∗(s
∗+1/2) exp(−s∗) (31a)

(k + s∗)! ≈
√

2π(k + s∗)(k+s
∗+1/2) exp(−k − s∗) (31b)

Using the above equation, the inequality on the remainder due to truncation of Jk(ke) is given by:∣∣∣∣∣∣
∞∑
j=s∗

(−1)j
(ke/2)k+2j

j! (k + j)!

∣∣∣∣∣∣ ≤ 1
2π

(ke/2)k+2s∗

s∗(s
∗+1/2) (k + s∗)(k+s∗+1/2)

exp(k + 2s∗) (32)

A value for s∗ maybe obtained by applying the logarithmic operator to the right hand side of the above
equation to obtain the following:

g(s∗) = b1 + b2s
∗ −

(
s∗ +

1
2

)
ln s∗ −

(
k + s∗ +

1
2

)
ln(k + s∗) = 0 (33)

where

b1 = − ln(2π) + k ln
(
ke

2

)
+ k +Ntol ln 10 (34a)

b2 = 2 ln
(
ke

2

)
+ 2 (34b)

It is clear that the number of terms required, s depends on the order of the Bessel function, k.
The convergence rate of the Bessel function decreases with its order, and since the number of Bessel
functions required is already restricted to 1 ≤ k ≤ kmax, k = kmax is substituted in (33) to obtain the
highest order of eccentricity required.

Although (33) does not have a closed form solution, s∗ ∈ Z, and consequently a second-order
Newton-Raphson solution with an initial guess of s∗ = kmax/2 is found sufficient for accurate values.
Therefore, the order of eccentricity to which Bessel function expansions are required, can be shown to
be the following:

s =
⌈

(kmax/2) + 2
g1(kmax/2)
g2(kmax/2)

⌉
− 1 (35)

where, g1(s∗) =
d

ds∗

(
1

g(s∗)

)
g2(s∗) =

d2

ds∗2

(
1

g(s∗)

)
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(36)

Similarly, the derivative of the kth-order Bessel function, truncated at j = s, is bounded by the
(s+ 1)th term, and a solution for s∗ can then be obtained from the following equation:

1
2π

k

2e
(k + 2s∗) exp(k + 2s∗)

(ke/2)(k+2s∗)

s∗(s
∗+1/2) (k + s∗)(k+s∗+1/2)

= 10−Ntol (37)

4 Examples

As the first example, the series expansion of cos f given by (21a) is considered. A truncated version
of this series is desired, that is valid for e ≤ 0.1 and a tolerance of Ntol = 9. Substituting p = 1,
q = 2η2/e = 19.8, and Ntol = 9 in (25) and (28) results in kmax = 9. Therefore,

cos f ≈ −e+
2η2

e

9∑
k=1

Jk(ke) cos kM (38)

As a second approximation, the evaluation of the Bessel functions is truncated to a power of eccentricity
to reduce errors to within 10−11. This is to prevent cumulative errors from exceeding the prescribed
tolerance of 10−9. Using k = kmax = 9, Ntol = 11, and e = 0.1 in (35), the number of terms required in
J9(9e) is s = 1. Consequently, the maximum power of eccentricity to which the approximate solution is
developed, is kmax + 2s = 11. Therefore, a completely analytical expansion for cos f within the desired
tolerance, correct to e = .1, is given by:

cos f ≈ −e+
2η2

e

[
e

2
cosM +

e2

2
cos 2M +

(
9
16

cos 3M − 1
16

cosM
)
e3

+
(

2
3

cos 4M − 1
6

cos 2M
)
e4 +

(
625
768

cos 5M − 81
256

cos 3M +
1

384
cosM

)
e5

+
(

81
80

cos 6M − 8
15

cos 4M +
1
48

cos 2M
)
e6

+
(

117649
92160

cos 7M − 15625
18432

cos 5M +
729

10240
cos 3M − 1

18432
cosM

)
e7

+
(

512
315

cos 8M − 729
560

cos 6M +
8
45

cos 4M − 1
720

cos 2M
)
e8

+
(

4782969
2293760

cos 9M − 5764801
2949120

cos 7M +
390625
1032192

cos 5M − 729
81920

cos 3M

+
1

1474560
cosM

)
e9 +

(
−8192

2835
cos 8M +

6561
8960

cos 6M − 32
945

cos 4M

+
1

17280
cos 2M

)
e10 +

(
−387420489

91750400
cos 9M +

282475249
212336640

cos 7M

− 9765625
99090432

cos 5M +
6561

9175040
cos 3M − 1

176947200
cosM

)
e11
]

(39)

It is assumed that f is known and varies from 0 to 2π. The mean anomaly M corresponding to the
true anomaly is obtained directly from Kepler’s equation, via the eccentric anomaly E. The values for
M are then used to calculate cos f using series solutions, and this is compared to the exact value. The
errors due to truncation are shown in Figure 1. The solid line depicts the error if only kmax = 8 orders
of Bessel functions are used. In this case, the error is found to be greater than 10−9, at e = 0.1. By
using kmax = 9, which was the value obtained from the approach described in this paper, the absolute
value of the error is shown to be less than 10−9, as shown by the dashed line. Furthermore, if the
Bessel functions are expanded through O(e11), that is, if (39) is used, then the error, as shown by the
dashed-dotted line, is of the same order.
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As the second example, an expansion for sin f , given by (21b), is sought within an accuracy of 10−6

and valid for e ≤ 0.6. Using series b from (20b), with p = 1, q = 2η = 1.6, and Ntol = 6, (27) and (28)
both result in kmax = 44. Using a Newton-Raphson iteration with an initial guess of kmax = 44 on
(37), results in s = 18, for the same eccentricity, but with a required tolerance of 10−9. Consequently,
the Bessel functions are to be evaluated through O(e78). The resulting terms are too numerous to
be shown here, but can be easily generated using any symbolic algebra tool. The errors arising due
to truncation are shown in Figure 2. The solid line depicts the error if the series is terminated at
kmax = 43. In this case, the error is slightly larger than the prescribed tolerance of 10−6, and the use
of one additional term (kmax = 44) reduces the error magnitude, as shown by the dashed line. By
restricting the maximum order of the eccentricity to O(e78), as shown by the dashed-dotted line, the
error is nearly indistinguishable from the case where the Bessel functions are evaluated using standard
library functions with standard floating point accuracy.

5 Conclusions

In this paper, a simple procedure has been developed that allows the truncation of previously-known
infinite series representation of solutions to functions of Kepler’s transcendental equation. For a given
(maximum) eccentricity and numerical tolerance, the number of Bessel functions required is easily
obtained using the Lambert W function. Furthermore, it is shown that the Bessel functions may
themselves be terminated at an appropriate order of eccentricity and the use of infinite series in the
function may be avoided. The final solution is therefore analytical for a given tolerance and known
maximum eccentricity.
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Fig. 1 Errors Between Approximate and Exact Functions for cos f , Example 1, Ntol = 9, e = 0.1
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Fig. 2 Errors Between Approximate and Exact Functions for sin f , Example 2, Ntol = 6, e = 0.6
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