

1

Accelerating Earthquake Simulations on

General-Purpose Graphics Processors

Prasenjit Sengupta*, Jimmy Nguyen†, Jason Kwan‡, and Padmanabhan K. Menon§

Optimal Synthesis Inc., Los Altos, CA 94022

and

Eric M. Heien** and John B. Rundle††

University of California, Davis, CA 95616

Parallelization strategies are presented for Virtual Quake, a numerical

simulation code for earthquakes based on topologically realistic systems of

interacting earthquake faults. One of the demands placed upon the simulation is the

accurate reproduction of the observed earthquake statistics over 3-4 decades. This

requires the use of a high-resolution fault model in computations, which demands

computational power that is well beyond the scope of off-the-shelf multi-core CPU

computers. However, the recent advances in general-purpose graphic processing

units have the potential to address this problem at moderate cost increments. A

functional decomposition of Virtual Quake is performed and opportunities for

parallelization are discussed in this work. Computationally intensive modules are

identified and these are implemented on graphics processing units, significantly

speeding up earthquake simulations. In the current best case scenario, a computer

with six graphics processing units can simulate 500-years of fault activity in

California at 1.5 km 1.5 km element resolution in less than 1 hour, whereas a

single CPU requires more than 2 days to perform the same simulation.

* Research Scientist, 95 First Street Suite 240, E-mail: sengupta@optisyn.com.
† Research Engineer, 95 First Street Suite 240, E-mail: jnguyen@optisyn.com.
‡ Research Engineer, 95 First Street Suite 240. E-mail: jason@optisyn.com.
§ Chairman and Chief Scientist, 95 First Street Suite 240, E-mail: menon@optisyn.com.
** Scientist, Computational Infrastructure for Geodynamics, Department of Earth and Physical Sciences,

One Shields Ave, E-mail: emheien@ucdavis.edu.
†† Professor, Department of Physics, E-mail: jbrundle@ucdavis.edu

2

I. Introduction

Numerical simulations play a crucial role in the study of the weather, global climate and

complex interconnected solid-Earth processes. There are important similarities between the

behavior of the atmosphere and the earth’s crust. Both systems are chaotic and highly

unpredictable [1]. Because of this fact, computer simulations are invaluable in better

understanding how atmospheric and solid-Earth systems operate. The increased resolution and

complexity of the simulation models and their associated analysis systems are driving the

requirements for NASA’s High-End Computing (HEC) resources program.

NASA has supported the development of the Virtual Quake (VQ) earthquake model. The

specific implementation considered here is Virtual California (VC) [2], a topologically realistic

numerical simulation (boundary element code) of earthquakes occurring on the fault systems in

California. The core of the simulation code can be used for simulating earthquakes based on any

fault system [3]. VC includes all the major strike-slip faults in California and has now been

extended to depth-dependent boundary elements, dipping faults, as well as various other new

features. VC allows the study of questions relating to the physics of earthquakes such as: 1)

precursory failure process of major earthquakes on complex fault systems; 2) timing and

statistics of major earthquakes on complex fault systems; and 3) origin of space-time correlations

between major earthquakes. Another major application of VC simulations lies in earthquake

forecasting. By systematically comparing simulation results to observed data, a series of spatial

probability density functions can be assembled that describe the probable locations of future

large earthquakes. These forecasts can yield fault-based locations for the next earthquake, as well

as the most-probable locations for earthquakes over the next 30 years.

Among their more practical uses, earthquake forecasts are employed to set earthquake

insurance rates, set the value of catastrophe bonds, aid in planning for disasters, and for seismic

research. The current earthquake forecast for California was developed by the Working Group on

California Earthquake Probabilities [4], [5], [6], [7]. The latest forecast was completed in April

2014 [7]. Typically these forecasts have been based largely on ‘expert opinion’ [5], [7] as well as

a variety of statistical measures. The latest forecast called, for the first time, the use of numerical

earthquake simulators as an independent means of estimating earthquake probabilities [7]. Plans

call for future forecasts to be based largely on numerical simulators such as VC [7] or any one of

the five numerical simulators currently undergoing development [8]. Of major importance will

3

be the need for the capability of real-time earthquake forecasting, particularly of aftershocks,

which can cause structures weakened by the main shock to collapse. Long run times preclude

real-time forecasting with numerical earthquake simulators. However, computational

acceleration methods such as those proposed in this paper can circumvent this and other

problems.

The central idea in this approach is to generate empirical (numerical) statistics for

earthquake faults, which take into account the physics of the fault system. Thus the reliance on

generic statistical distributions is removed. This procedure is often used in numerical weather

forecasting [9]. These empirical statistics can then be used to construct conditional probabilities

for major earthquakes at various earthquake faults in the model [4], [5], [6]. Additional methods

to construct conditional probabilities are described in detail by van Aalsberg et al [10].

One of the demands placed upon the simulations is the accurate reproduction of the

Gutenberg-Richter and Omori statistics over 3–4 decades of linear scale. This requires grid sizes

from the smallest at about 100 m, to the largest anticipated at about 400 km. The major active

faults in California comprise roughly 10,000 km in aggregate length, so the number of fault

elements required is about . Current models use 3 km resolution, so an increase to 100 m

resolution amounts to a 1000-fold increase in the number of elements. As a consequence, there is

a million-fold increase in the number of Green’s function evaluations. With the Barnes-Hut

algorithm [11], run times scale as , so the run times are expected improve by a factor

of approximately 50. However, a 50,000-year VC simulation (order of 1 million events) running

on a 32-core machine still consumes about 1536 core-hours. Therefore, a different computational

approach is needed if simulations are to be performed closer to real time.

The computational complexity of earthquake simulation for high-resolution fault models can

be addressed by new technologies being developed in the area of parallel computing, arising

from the introduction of programmable Graphics Processing Units (GPUs). The GPU is a rapidly

maturing technology offering a high level of parallel computing power for computationally

demanding applications. Over the past few years, GPUs have evolved from a fixed-function

processor built around computer graphics into a full-featured parallel processor which can be

programmed through several high-level and low-level computing languages. Historically, GPUs

were programmed by mapping mathematical operations to a graphics language such as OpenGL.

NVIDIA’s Compute Unified Device Architecture (CUDA), [12], [13], is a set of software tools

4

for managing computations on the GPU as a data-parallel computing device while maintaining

the structure of a high-level language. GPUs are now used by the research community in order to

address a broad range of computationally demanding and complex problems [14]. One of the

attractive features of the GPU-enabled workstation is that it provides performance that rivals

supercomputing clusters at desktop price-points.

GPU technology has been used in related prior work. For example, Komatitsch et al [15]

implemented a finite-element-based earthquake simulation on a single GPU using CUDA. A

finite-differenced wave equation, known as the Anelastic Wave-Propagation-Olsen-Day-Cui

model, was accelerated using GPUs by Unat et al [16]. Without discussing specific theoretical

differences between prior work and this paper, it is worth noting that the work by Unat et al

used Mint [17], an automated tool for C-to-CUDA conversion. It was also limited to

implementation on several CPUs with a single GPU device each. Work by In comparison with

[15] and [16], the present work uses customized CUDA code and is generalized to clusters of

machines with multiple GPUs.

This paper is organized as follows: Section 2 provides a functional overview of VC code and

describes its computational components. Section 3 discusses the methods used to implement VC

on GPUs. The computational experience and acceleration results are presented in Section 4.

Conclusions and avenues for future work are discussed in Section 5.

II. Functional Decomposition of Virtual California

As described earlier, Virtual California is a model that includes stress accumulation and

release, as well as stress interactions on the San Andreas and other adjacent faults (Figure 1 [32])

[18], [19], [20], [21]. The model is based on a set of mapped faults with estimated slip rates, a

prescribed plate tectonic motion, potential earthquakes on all faults, and elastic interactions [18],

[22], [23], [24]. Earthquake activity data and slip rates on these model faults are obtained from

geologic databases. In contrast to the recent past, VC simulations now include dipping strike

slip, thrust, and normal faults. Similar types of simulations have been developed by others [25],

[26], [27], [28], [30].

Loading of each VC fault segment occurs due to the accumulation of a slip deficit at the

prescribed slip rate of the segment (“backslip model”). The vertical rectangular fault segments

interact elastically. Earthquake initiation is controlled by friction coefficients along with the

5

space- and time-dependent stresses on fault segments which are computed by means of boundary

element methods. Historical earthquakes are used that have moment magnitudes in

California during the last 200 years to prescribe the friction coefficients. A consequence of the

fault segmentation is that the simulations do not generate earthquakes with magnitudes less than

about .

Using VC, it is possible to construct simulated interferograms associated with major

simulated earthquakes (Figure 2). These can be quantitatively compared to actual interferograms

[31].

A. Computational Overview of the Simulation

VC is an efficient, parallel object-oriented C++ numerical code that runs on NASA HEC’s

Columbia system and JPL’s COSMOS computer using Message Passing Interface (MPI)

protocols. Figure 3 shows the path of execution in a parallel simulation running on multiple

processors either on a cluster, multi-core machine or GPUs. Note that the figure shows the

splitting of the execution across multiple parallel processors and the global reduction operations.

The execution is divided into three distinct phases:

1. Initialization: The initialization phase begins by parsing the specified model and the

simulation parameters. If the simulation is running on multiple processors, the initialization

process partitions the fault elements. This partitioning tries to ensure that each processor is

responsible for roughly an equal number of elements and that elements on the same

processor are on the same fault or geographically close to each other. Next, each processor

calculates stress influences by all model elements upon the local elements. The core of the

simulation involves cycling between two main phase: i) determining long-term stress

buildup in the system, and ii) propagation of a rupture through the system. These are

shown by the lower two-thirds of Figure 3.

2. Long-Term Stress Interaction: The simulation begins in the long-term stage by calculating

the rate of long-term stress buildup for each element. In a parallel simulation each

processor determines when each of the local elements will rupture. This is then globally

reduced to finding when and where the first rupture will occur. Once this is determined, the

rupture is propagated through the system.

3. Rupture Propagation: First, the ruptured elements are processed and their new stresses are

communicated through the system. Each processor recalculates the effects of this change

6

on the stresses of their local elements and determines which, if any, have ruptured. If any

of the processors experience further ruptures, the rupture propagation phase continues. This

phase generally involves multiple propagation steps until all the earthquake computations

are complete. Once there are no more ruptures, the simulation returns to the long-term

stress calculation. The simulation is terminated after the specified number of simulation

years have elapsed.

B. VC Code Profiling

A parallel version of VC has been implemented on a cluster using MPI and C++; this work

is described by Heien et al [32]. The performance of this MPI implementation was evaluated

using the northern California fault model shown in Figure 1 with segments in 6

layers. The simulation was run on a 16-node cluster, with each node having 24 GB of RAM and

two quad core Intel Xeon processors running at 2.4 GHz and with all nodes connected by a

Gigabit Ethernet switch. The VC simulation was performed for a simulation time of 100,000

years. For a single processor, most of the time is spent in stress calculation (69.1%) and Green’s

function calculation (27.5%). Very little time is spent in rupture propagation (3.2%) or

communication functions. As the number of processors increases, communication dominates the

simulation time. By 16 processors the simulation spends the most time in communication

functions (61.9%). Because of this the simulation fails to scale favorably with increasing number

of processors.

This study also noted that as the number of elements increases, the following behaviors are

note: i) the proportion of time spent in performing the matrix vector multiplication increases, and

ii) the proportion of time spent in creating the Green’s function matrix and the rest of the

functions in the application decreases.

III. Acceleration of VC on GPUs

Based on profiling the VC code on CPUs, it was found that the two segments of the

simulation that perform the best when accelerated are the Green’s function matrix construction,

followed by the stress propagation using matrix-vector multiplication. Prior to the Green’s

function matrix calculation, fault elements, obtained from the user-specified fault models, need

to be partitioned across different nodes using a partitioning scheme. Let be the total number of

fault elements and be the number of nodes in a cluster. Each node is assigned a subset of fault

7

data, which is given by , where is the number of nodes. Using MPI, fault assignment to

each individual node is also broadcast to all other nodes so that each node can keep track all

assignments. Maps are also maintained on each node to help keep track of other nodes' fault

assignment.

Acceleration of Green’s function matrix calculation and stress vector propagation are

discussed in the following subsections.

A. Acceleration of Green’s Function Matrix Calculations

A two-level nested loop which iterates of rows and columns is used to generate the entries of

the Green’s function matrix in the VC model. These matrix elements are calculated using closed-

form analytical expressions given by Okada [33]. There are 232 Okada functions, which were re-

implemented using CUDA for execution on the GPU.

The features that makes Green’s function matrix generation suitable for GPU

implementation are:

1. Independence: Calculation of each entry of the Green’s function matrix is independent of

the others and hence they can be generated concurrently in parallel.

2. Degree of Parallelism: The total number of parallel threads for the problem is equal to

number of entries in the matrix (, where is the number of fault elements. For

instance, an all-California problem at 3 km resolution consists of 11,291 elements,

providing potentially 127 million parallel threads. It may be observed that the degree of

parallelism can be very high.

3. Arithmetic Intensity: Arithmetic intensity is defined as the number of computations

performed per memory transaction. For every entry of the matrix, to

mathematical operations are performed to obtain the output values starting with as few as

 input double-precision floating point numbers.

On each multi-GPU supporting node, Green’s function matrix (also called the stress

influence matrix) is generated from the fault data on multiple GPU devices. This step consists of

calculating two matrices, one each for shear and normal stress coefficients. The function that

generates the Green’s function matrix first determines the correct matrix sizes to allocate for

each GPU device, taking into account odd data sizes. Hence each GPU on a node should have

approximately two matrices of size , one for shear and one for normal stress. In

the foregoing formula, denotes the number of GPU devices on the th node.

8

The stress influence matrices on each GPU only contain a portion of the fault data. The

function then concurrently performs Green’s function evaluations on all of these GPU devices.

Parallelization is achieved using the OpenMP API, which provides support for shared-memory

parallel thread management and programming within a machine. Thus the function creates as

many computing parallel threads as the number of GPU devices, where each thread handles its

own Green’s function calculation on a single GPU, using its own portion of the assigned fault

data.

Green’s function matrices are stored in column-major format and allocated with pitch

memory to ensure global memory coalescing. Pitch memory refers to a CUDA practice when

memory is allocated with padding to ensure coalesced memory access. This is because GPU

memory access is most efficient when each kernel accesses contiguous memory blocks of the

same size. This efficient memory management also speed up the matrix multiplication which is

discussed in the next section.

The computation of Green’s function matrices is also parallelized across multiple rows.

Kernels are executed concurrently using the concept of streams and asynchronous memory

transfers between host and the device. NVIDIA Fermi and later versions of the GPU support the

launch of multiple kernels on the same GPU and concurrent execution of kernels on different

streams. Consequently, the kernel can be invoked on different streams to achieve parallelization,

with the kernel being responsible for computing one row of the Green’s function matrices. Each

row of the matrix corresponds to one fault element that is assigned to the GPU.

The calculation of each element in each row of the Green’s matrices is also independent of

all the others and hence they can be generated concurrently in parallel.

B. Acceleration of Stress Propagation Calculations

After the Green’s function evaluations are complete on multiple GPU devices, the stress

influence matrices (normal and shear) are stored on each GPU. Stress propagation calculations in

VC are performed by using matrix-vector multiplication to determine the vector of stresses

 on the various fault elements, given the vector of strains on each element and the

stress influence matrix
 :

 (1)

9

Matrix-vector multiplication in VC is parallelized by dividing the matrix columns into

blocks, multiplying them with portions of the vector and accumulating the resulting sums into an

output vector. These steps constitute a 2-D partitioning process of the matrix [34]. Note that in a

matrix vector multiplication, each row of the matrix multiplies the entire input vector to generate

one element of the output vector. This is implemented in parallel over the rows of the matrix,

where thread multiplies row of the matrix
 with input vector to generate the th

entry in the
 vector. The input vector is stored in shared memory to enhance runtime

performance.

During the rupture propagation phase, the strain vector is typically sparse. The matrix

multiplication then operates only on the non-zero elements of to lower memory and

computing requirements. The check for non-zero values in introduces a conditional

statement which can potentially cause warp divergence. In other words, each parallel kernel can

require different amounts of time, which can reduce efficiency. However, divergence between

parallel operations occurs in at most one addition and one multiplication. Moreover the check is

performed on the vector only, since the block matrices are typically dense. Thus the benefits of

performing limited number of computations on a sparse vector greatly outweigh any loss in

efficiency due to the presence of conditional statements.

At every stress evaluation stage, the strain vector is copied from the host memory to

the GPU global memory. Then the strain vector is divided into smaller segments B1, B2, B3,

etc., depending on the maximum size that will fit in shared memory (Figure 4). The first segment

B1 is next copied into the shared memory. The kernel multiplies the corresponding block A1

from the
 matrix with the shared memory segment B1 and the result is accumulated at the

output. The second segment B2 is copied next, and multiplied with A2 to yield the next element

of the output. This process is continued until all the elements of the output stress vector

have been computed.

In VC, both the normal and shear stresses are calculated from the strain vector using the

process described above. The normal and shear stress calculations are independent of each other

and can be performed concurrently. As noted before, GPUs of the Fermi type and later support

simultaneous launch of multiple kernels on the same GPU. While kernels in the same stream

execute in order, one after the other, kernels on different streams can execute concurrently.

10

Given enough hardware resources, this process achieves task-parallelism in addition to the data-

parallelism.

In the current GPU implementation, the kernels for calculating the normal and shear stresses

are instantiated in separate streams on the GPU. The shear and normal stress calculations are

then performed in parallel, if enough hardware resources are available. The foregoing process

can be readily divided among multiple GPUs. Each GPU is apportioned a predefined number of

blocks and segments and matrix-vector multiplications are performed independently on each

GPU. The last step is that of merging the resulting vectors obtained from each GPU device. The

function uses stream synchronization as a mechanism to wait for all GPU devices to complete

their own matrix multiplication tasks. Once these are complete, the results may be merged in a

straightforward manner.

IV. Runtime Performance Evaluation

A number of problems of varying resolutions were tested to assess the acceleration offered

by implementation of VC on GPUs. These are listed in Table 1.

The problems listed in Table 1 are arranged in order of the increase in the number of

elements used to represent the faults in the state of California. For example, the ‘Parkfield’

model refers to a single fault in the Central California in the Carrizo Plain, modeled using 48

elements, while ‘SAF’ refers to all faults of the main strand of the San Andreas Fault. The

models starting with ‘AllCal’ consist of all faults in the state of California, but at different

resolutions. For instance, ‘AllCal_3.0km’ consists of a model where fault elements are of the

size .

The third column in Table 1 lists the memory required to store the Green’s function matrices

for each problem. Device memory on the GPU is the constraint which determines how many

GPUs are required to perform computations on a model of a given size. For example, an all-

California problem at can be simulated on a single NVIDIA Kepler GPU but a

finer resolution model such as the problem requires at least two GPUs.

The CUDA implementations of VC on single-GPU and multiple-GPU configurations were

evaluated by comparing the results against the C++ implementation. The validation of results

consisted of three steps. First, a direct comparison of the entries of the Green’s function matrices

was performed. For small matrices (e.g. the Parkfield problem), the comparison was performed

11

by inspection. For larger matrices, comparison was performed by writing the matrix contents to

files, loading them in an external scripting environment (Python), and calculating the Frobenius

norm of the difference matrix.

Second, stress values at the end of an iteration were compared. For small matrices, the

elements of the stress vector obtained from the GPU and CPU implementations were manually

compared. For larger matrices, the contents of the vectors were written to files, which were then

loaded in an external scripting environment. The vector norm of the difference was then

calculated. This test was performed at the end of every iteration to ensure that rounding errors

did not accumulate.

Finally, VC simulation stores the time of event occurrence and the magnitude of an event at

all the faults in a simulation. The values from the VC simulation of the CPU code and GPU code

were compared in order to ensure accuracy.

Both implementations utilized double-precision floating point operations. Note that this

requires that all GPUs on a node offer at least Compute Capability 2.0. It is possible to use VC

with single-precision arithmetic, which can potentially enable the simulation of larger problems

on fewer GPUs. However, this option can have implications on the accuracy of long-term

simulations, especially when the statistical nature of the model is considered.

A. Computational Platforms

The foregoing problems were tested on four different configurations detailed in the

following:

1. Configuration 1: this configuration consists of two Intel Xeon E5620 CPUs with four

cores each, operating at 2.4 GHz. The system has 72 GB of RAM available. A GPU is

also available on this system, which was disabled when this configuration was used as the

CPU benchmark run against which GPU implementation speedups were evaluated.

2. Configuration 2: This configuration consists of one desktop computer equipped with two

NVIDIA GPUs: a Tesla K20x (server-class GPU consisting of a Kepler GK110) and a

Titan, each with 2688 cores, operating at 732 MHz, with 6 GB of device memory each.

This system is suitable for problems of resolution up to 2.1 km 2.1 km (AllCal_2.1km).

3. Configuration 3: this is a node from the NVIDIA cluster, equipped with six Tesla K40

GPUs (server-class GPU consisting of one Kepler GK110B) each with 2880 cores and 12

12

GB memory. This configuration can solve problems of the size associated with

AllCal_1.5km.

4. Configuration 4: consists of two nodes from the NVIDIA cluster; each node has four

Tesla K40 GPUs. This configuration was used to test the cluster-with-multiple-GPU

version of VC.

B. Acceleration Results

Execution times for a 500-year simulation were calculated using the configurations

discussed in Section 4.1. The execution times from Configurations 2-4 were compared with

those from Configuration 1 in order to assess the speedup obtained using the single- and multi-

GPU implementations of VC. These are reported in Table 2. Shaded cells represent

configurations that were not tested. In a small subset of cases, either no speedup was observed,

or using a GPU produced slower performance. This is because the benefit of a large number of

GPU cores is outweighed by its slower clock speed and the overhead associated with memory

transfers between the CPU host and GPU devices. An example of the first case is given by

Problem #1 with 48 fault elements, and an example of the latter case is seen when moving from

1 GPU to 2 GPUs in Problem #5 with 11,291 fault elements. However, in general, the speedup

using a GPU implementation over a CPU implementation was observed to have an accelerating

trend with the size of the problem. Results indicate that higher speedup can be expected for

larger problems when implemented on clusters of CPU nodes with multiple GPUs each.

Performance in some of the other larger problems could not be carried out because the CPU-

GPU clusters were available only on a limited basis.

The acceleration trend for a single node with 1, 2, and 6 GPUs is shown graphically in

Figure 5. In this figure, the solid black vertical line indicates the number of elements in an all-

California simulation with a fault element resolution of . This problem will be

composed of 418,660 fault elements and is expected to require 2.6 TB of memory to store the

stress influence matrices. Ongoing research is aimed at reducing the amount of memory required

for storing matrices in very large problems.

The best performance in the present research was obtained for the

resolution problem which consists of 46,033 fault elements. This problem, when executed on a

CPU with 16 concurrent threads, requires more than 2 days for a 500-year simulation. The same

problem on a system with 6 GPUs requires less than 1 hour. Utilization of a cluster of computers

13

with multiple GPUs is therefore a key technology crucial for simulating higher-resolution models

at , , or finer.

The VC speedup on GPUs reported in this paper is strongly dependent on the acceleration of

Green’s function matrix construction and the stress propagation. For the simulation examples

considered in this paper, the stress propagation dominated the computation time since the

matrices are only constructed once at the beginning of the simulation. For long-term simulations

with parameter updates, the Green’s function matrices may require periodic recalculation. This

can potentially improve speedup because of the truly independent nature of element-wise

calculation in the stress influence matrix.

V. Conclusion

This paper outlined the process of implementing the Virtual California earthquake

simulation software on a system with one or more CPUs and GPUs to leverage the large number

of parallel threads that can be executed at an instant on these architectures. The algorithms

constituting the earthquake simulations are parallelizable but the native C++ implementation

require several hours of computation time on clusters consisting of CPUs for modest problem

sizes. The native code was analyzed and profiled to identify functions which required the

greatest amount of computational resources based on the proportion of computing times

consumed, relative to the overall execution time. These functions were then accelerated in order

to achieve the biggest payoff in performance.

The CUDA-enabled software can be executed on a cluster of CPUs consisting of nodes

equipped with one or more GPUs. The software utilizes MPI to communicate and share memory

and tasks between nodes, and OpenMP and CUDA to utilize parallel processing on GPUs on

each node.

The best performance achieved in the present research was in simulating the 1.5 km 1.5

km resolution model of the faults in California. This higher resolution model yielded a speedup

of 56 , demonstrating that a 2-day simulation on a CPU-only machine with 16 concurrent

threads can be performed in less than 1 hour on a computer equipped with 6 GPUs.

It is evident from the observed results that using a CPU cluster equipped with multiple

GPUs has the potential for further speeding up computations associated with Virtual California

earthquake simulation code. Virtual California is an implementation of Virtual Quake which uses

14

California fault models specifically. Therefore in general, simulation of fault activity for larger

geographical regions will also benefit from cluster-wide implementations. Furthermore, cluster

implementation is essential to the ability of solving problems at resolution 1 km × 1 km or finer.

Further research is required in the GPU implementation of algorithms such as Barnes-Hut for

exceptionally high resolution problems such as 100 m × 100 m, in order to exploit compressed

forms of the stress influence matrices for stress propagation calculations.

Acknowledgment

This work was supported by NASA Headquarters under Grant NNX12AP98G with

Dr. Tsengdar J. Lee as Technical Officer. This work has greatly benefited from frequent

discussions on the CPU/GPU implementations of the VC code with him. The authors would also

like to thank Mr. Greg Branch of NVIDIA Corp. for providing access to the NVIDIA GPU

cluster machine, which enabled several additional software tests.

References

[1] Rundle, J. B., Turcotte, D. L., and Klein, W., Geocomplexity and the Physics of

Earthquakes, Geophysical Monograph Series, Vol. 20, American Geophysical Union,

2000.

[2] Rundle, P. B., Rundle, J. B., Tiampo, K. F., Donnellan, A., and Turcotte, D. L., “Virtual

California: Fault Model, Frictional Parameters, Applications,” Pure and Applied

Geophysics, Vol. 163, No. 9, Sep. 2006, pp. 1819—1846.

[3] Heien, E. M., and Sachs, M., “Understanding Long-Term Earthquake Behavior through

Simulation,” Computing in Science and Engineering, No. 5, Vol. 14, Sep.—Oct. 2012,

pp. 10—20.

[4] Working Group on California Earthquake Probabilities www.wgcep.org, retrieved July 13,

2015.

[5] Field, E. H., Dawson, T. E., Felzer, K. R., et al., “Uniform California Earthquake Rupture

Forecast, Version 2 (UCERF 2),” Bulletin of the Seismological Society of America, vol. 99,

no. 4, pp. 2053-2107, Aug. 2009.

[6] Field, E.H., “A Summary of Previous Working Groups on California Earthquake

Probabilities,” Bulletin of the Seismological Society of America, vol. 97, no. 4, pp. 1033-

1053, Aug. 2007.

http://www.wgcep.org/

15

[7] Field, E.H., Arrowsmith, R.J., Biasi, G.P. et al., “Uniform California Earthquake Rupture

Forecast, Version 3 (UCERF3)—The Time‐Independent Model”, Bulletin of the

Seismological Society of America, vol. 104 no. 3, pp. 1122-1180, June. 2014.

[8] Tullis, T. E., “2010 Earthquake Simulators Workshop Report,” available at

http://www.scec.org/workshops/2010/simulators

/index.html, Jul. 2010.

[9] Leutbecher, M., Palmer, T. N., “Ensemble Forecasting,” J. Computational Physics, vol.

227, no. 7, pp. 3515-3539, Mar. 2008.

[10] Van Aalsburg, J., Rundle, J. B., Grant, L. B., Rundle, P. B., Yakovlev, G., Turcotte, D. L.,

Donnellan, A., Tiampo, K. F., and Fernandez, J., “Space- and Time-Dependent

Probabilities for Earthquake Fault Systems from Numerical Simulations: Feasibility Study

and First Results,” Pure and Applied Geophysics PAGEOPH, vol. 167, pp 967-977, 2010.

[11] Barnes J., and Hut, P., “A hierarchical force-calculation algorithm,” Nature,

vol. 324, no. 6096, pp. 446–449, Dec. 1986.

[12] Kirk D. B., and Hwu W. W., “Programming Massively Parallel Processors: A Hands-on

Approach,” Burlington MA: Morgan Kaufmann, 2010.

[13] Sanders J., and Kandrot E., “CUDA by Example: An Introduction to General Purpose GPU

Programming,” Reading, MA: Addison-Wesley Professional, 2010.

[14] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C., “GPU

Computing,” Proceedings of the IEEE, Vol. 96, No. 5, May 2008, pp. 879—899.

[15] Komatitsch, D., Michéa, D., and Erlebacher, G., “Porting a High-Order Finite-Element

Earthquake Modeling Application to NVIDIA Graphics Cards using CUDA,” Journal of

Parallel and Distributed Computing, Vol. 69, No. 5, May 2009, pp. 451—460.

[16] Unat, D., Zhou, J., Cui, Y., Baden, S. B., and Cai, X., “Accelerating a 3-D Finite

Difference Earthquake Simulation with a C-to-CUDA Translator,” Computing in Science

& Engineering, vol. 14, no. 3, pp. 48-59, May 2012.

[17] Unat, D., Cai, X., and Baden, S. B., “Mint: Realizing CUDA performance in 3D Stencil

Methods,” Proc. 25th International Conference on Supercomputing (ICS ’11), pp. 214-224,

May 2011.

http://www.scec.org/workshops/2010/simulators/index.html
http://www.scec.org/workshops/2010/simulators/index.html

16

[18] Rundle, J. B., “A Physical Model for Earthquakes: 2. Application to Southern California,”

J. Geophysical Research, vol. 93, no. B6, pp. 6255-6274, Jun. 1988.

[19] Rundle, J. B., Rundle P. B., Donnellan A., Turcotte, D. L., Shcherbakov. R., Li, P.,

Malamud, B. D., Grant, L. B., Fox, G. C., McLeod, D., Yakovlev, G., Parker, J., Klein, W.,

and Tiampo, K. F., “A Simulation-Based Approach to Forecasting the Next Great San

Francisco Earthquake,” Proc. National Academy of Sciences, USA., vol. 102, no. 43., pp.

15363-15367, Aug. 2005.

[20] Van Aalsburg, J., Grant, L. B., Yakovlev, G., Rundle, P. B., Rundle, J. B., Turcotte D. L.,

and Donnellan, A., “A Feasibility Study of Data Assimilation in Numerical Simulations of

Earthquake Fault Systems,” Physics of Earth and Planetary Interiors, vol. 163, pp. 149-

162, Aug. 2007.

[21] Yikilmaz, M. B., Turcotte, D. L., Yakovlev, G., Rundle, J. B., and Kellogg, L. H., “Virtual

California Earthquake Simulations: Simple models and their Application to an Observed

Sequence of Earthquakes,” Geophysical Journal International, vol. 180, no. 2, pp. 734-

742, Feb. 2010.

[22] Rundle, P. B., Rundle, J. B., Tiampo, K. F., Martins, J. S., McGinnis, S., and Klein, W.

“Nonlinear Network Dynamics on Earthquake Fault Systems,” Physical Review Letters,

vol. 87, no. 14, pp. 148501-1—148501-4, Oct. 2001.

[23] Rundle, J. B., Tiampo, K. F., Klein, W., and Sa Martins, J. S., “Self-Organization in Leaky

Threshold Systems: The Influence of Near-Mean Field Dynamics and its Implications for

Earthquakes, Neurobiology, and Forecasting,” Proc. National Academy of Sciences, USA.

vol. 99, pp. 2514-2521, Feb. 2002.

[24] Rundle, J. B., Rundle, P. B., Donnellan, A., and Fox, G. C., “Gutenberg-Richter Statistics

in Topologically Realistic System-Level Earthquake Stress-Evolution Simulations,” Earth

Planets and Space, vol. 56, no. 8, pp. 761-771, Aug. 2004.

[25] Ward, S. N., “An Application of Synthetic Seismicity in Earthquake Statistics: The Middle

America Trench,” J. Geophysical Research, vol. 97, no. B5, pp. 6675-6682, May 1992.

[26] Ward, S. N., “A Synthetic Seismicity Model for Southern California: Cycles, Probabilities,

and Hazard,” J. Geophysical Research, vol. 101, no. B10, pp. 22393-22418, Oct. 1996.

17

[27] Ward, S. N., “San Francisco Bay Area Earthquake Simulations: A Step toward a Standard

Physical Earthquake Model,” Bulletin of Seismological Society of America, vol. 90, no. 2,

pp. 370-386, Apr. 2000.

[28] Goes, S. D. B. and Ward, S. N., “Synthetic Seismicity for the San Andreas Fault,” Annals

of Geophysics, vol. 37, no. 6, pp. 1495-1513, Dec. 1994.

[29] Robinson, R., “A Test of the Precursory Accelerating Moment Release Model on some

recent New Zealand Earthquakes,” Geophysical Journal International, vol. 140, no. 3, pp.

568-576, Mar. 2000.

[30] Dieterich, J. H., Richards-Dinger, K. B., “Earthquake Recurrence in Simulated Fault

Systems,” Pure and Applied Geophysics PAGEOPH, vol. 167, pp. 1087-1104, 2010.

[31] Wei, M., Sandwell, D., and Smith-Konter, B., “Optimal Combination of InSAR and GPS

for Measuring Interseismic Crustal Deformation,” Advances in Space Research, vol. 46,

no. 2, pp. 236-249, Jul. 2010.

[32] Heien, E. M., Yikilmaz, M. B., Sachs, M. K., Rundle, J. B., Louise H. Kellogg, L. H.,

Turcotte, D. L., “Parallelization of the Virtual California Earthquake Simulator,”

International Conference on Computational Science (ICCS), 2011.

[33] Okada, Y., “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of

the Seismological Society of America, Vol. 82, no. 2, pp. 1018-1040, Apr. 1992.

[34] Grama, A., Gupta, A., Karypis, G., and Kumar, V., Introduction to Parallel Computing,

Essex, UK: Pearson Education Ltd., pp. 337-345, 2003.

18

List of Tables

Table 1. List of VC Problems

Model Name No. of Fault

Elements

Size of Green’s

Function Matrix

Parkfield 48 24 KB

SAF 1,508 17.48 MB

AllCal2_Trunc4905 4,905 183.82 MB

AllCal2_Trunc7453 7,453 423.96 MB

AllCal_3.0km 11,291 2 GB

AllCal_2.1km 25,700 7 GB

AllCal_1.7km 29,496 19 GB

AllCal_1.5km 46,033 33 GB

Table 2. Simulation Time and Speedup on CPU, single GPU, multiple GPUs, and Cluster

Elements 1 node CPU 1 node 1

GPU

1 node 2

GPUs

1 node 6

GPUs

2 nodes 4

GPUs

48 < 1s 1s (<1)

1,508 15s 5s (3)

4,905 2m 46s 15s (11)

7,453 6m 11s 28s (13)

11,291 1h 26m 2m 31s (32) 2m 38s (32) 2m 17s (37)

25,700 3h 11m Out of

Memory

5m 32s (35) 4m 39s (41)

29,496 12h 17m Out of

Memory

Out of

Memory

14m 58s (49)

46,033 48h 33m Out of

Memory

Out of

Memory

52m 15s (56)

19

List of Figures

Figure 1. Fault Model used in Virtual California Simulation

20

Figure 2. A Northern California VC Fault Model with Overlaid Interferogram from a Simulated

1906-Type Earthquake

21

Figure 3. Execution of Virtual California on a Parallel System

22

Figure 4. Parallel Matrix-Vector Block Multiplication and Accumulation

23

Figure 5. GPU Speedup as a Function of Problem Size and Number of Available GPU Devices

