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Parallelization strategies are presented for Virtual Quake, a numerical 

simulation code for earthquakes based on topologically realistic systems of 

interacting earthquake faults. One of the demands placed upon the simulation is the 

accurate reproduction of the observed earthquake statistics over 3-4 decades. This 

requires the use of a high-resolution fault model in computations, which demands 

computational power that is well beyond the scope of off-the-shelf multi-core CPU 

computers. However, the recent advances in general-purpose graphic processing 

units have the potential to address this problem at moderate cost increments. A 

functional decomposition of Virtual Quake is performed and opportunities for 

parallelization are discussed in this work. Computationally intensive modules are 

identified and these are implemented on graphics processing units, significantly 

speeding up earthquake simulations. In the current best case scenario, a computer 

with six graphics processing units can simulate 500-years of fault activity in 

California at 1.5 km   1.5 km element resolution in less than 1 hour, whereas a 

single CPU requires more than 2 days to perform the same simulation. 
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I. Introduction 

Numerical simulations play a crucial role in the study of the weather, global climate and 

complex interconnected solid-Earth processes. There are important similarities between the 

behavior of the atmosphere and the earth’s crust. Both systems are chaotic and highly 

unpredictable [1]. Because of this fact, computer simulations are invaluable in better 

understanding how atmospheric and solid-Earth systems operate. The increased resolution and 

complexity of the simulation models and their associated analysis systems are driving the 

requirements for NASA’s High-End Computing (HEC) resources program. 

NASA has supported the development of the Virtual Quake (VQ) earthquake model.  The 

specific implementation considered here is Virtual California (VC) [2], a topologically realistic 

numerical simulation (boundary element code) of earthquakes occurring on the fault systems in 

California. The core of the simulation code can be used for simulating earthquakes based on any 

fault system [3]. VC includes all the major strike-slip faults in California and has now been 

extended to depth-dependent boundary elements, dipping faults, as well as various other new 

features. VC allows the study of questions relating to the physics of earthquakes such as: 1) 

precursory failure process of major earthquakes on complex fault systems; 2) timing and 

statistics of major earthquakes on complex fault systems; and 3) origin of space-time correlations 

between major earthquakes. Another major application of VC simulations lies in earthquake 

forecasting. By systematically comparing simulation results to observed data, a series of spatial 

probability density functions can be assembled that describe the probable locations of future 

large earthquakes. These forecasts can yield fault-based locations for the next earthquake, as well 

as the most-probable locations for earthquakes over the next 30 years.  

Among their more practical uses, earthquake forecasts are employed to set earthquake 

insurance rates, set the value of catastrophe bonds, aid in planning for disasters, and for seismic 

research. The current earthquake forecast for California was developed by the Working Group on 

California Earthquake Probabilities [4], [5], [6], [7]. The latest forecast was completed in April 

2014 [7]. Typically these forecasts have been based largely on ‘expert opinion’ [5], [7] as well as 

a variety of statistical measures. The latest forecast called, for the first time, the use of numerical 

earthquake simulators as an independent means of estimating earthquake probabilities [7]. Plans 

call for future forecasts to be based largely on numerical simulators such as VC [7] or any one of 

the five numerical simulators currently undergoing development [8]. Of major importance will 
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be the need for the capability of real-time earthquake forecasting, particularly of aftershocks, 

which can cause structures weakened by the main shock to collapse. Long run times preclude 

real-time forecasting with numerical earthquake simulators. However, computational 

acceleration methods such as those proposed in this paper can circumvent this and other 

problems.   

The central idea in this approach is to generate empirical (numerical) statistics for 

earthquake faults, which take into account the physics of the fault system. Thus the reliance on 

generic statistical distributions is removed. This procedure is often used in numerical weather 

forecasting [9]. These empirical statistics can then be used to construct conditional probabilities 

for major earthquakes at various earthquake faults in the model [4], [5], [6]. Additional methods 

to construct conditional probabilities are described in detail by van Aalsberg et al [10]. 

One of the demands placed upon the simulations is the accurate reproduction of the 

Gutenberg-Richter and Omori statistics over 3–4 decades of linear scale. This requires grid sizes 

from the smallest at about 100 m, to the largest anticipated at about 400 km. The major active 

faults in California comprise roughly 10,000 km in aggregate length, so the number of fault 

elements required is about       . Current models use 3 km resolution, so an increase to 100 m 

resolution amounts to a 1000-fold increase in the number of elements. As a consequence, there is 

a million-fold increase in the number of Green’s function evaluations. With the Barnes-Hut 

algorithm [11], run times scale as         , so the run times are expected improve by a factor 

of approximately 50. However, a 50,000-year VC simulation (order of 1 million events) running 

on a 32-core machine still consumes about 1536 core-hours. Therefore, a different computational 

approach is needed if simulations are to be performed closer to real time. 

The computational complexity of earthquake simulation for high-resolution fault models can 

be addressed by new technologies being developed in the area of parallel computing, arising 

from the introduction of programmable Graphics Processing Units (GPUs). The GPU is a rapidly 

maturing technology offering a high level of parallel computing power for computationally 

demanding applications. Over the past few years, GPUs have evolved from a fixed-function 

processor built around computer graphics into a full-featured parallel processor which can be 

programmed through several high-level and low-level computing languages. Historically, GPUs 

were programmed by mapping mathematical operations to a graphics language such as OpenGL. 

NVIDIA’s Compute Unified Device Architecture (CUDA), [12], [13], is a set of software tools 
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for managing computations on the GPU as a data-parallel computing device while maintaining 

the structure of a high-level language. GPUs are now used by the research community in order to 

address a broad range of computationally demanding and complex problems [14]. One of the 

attractive features of the GPU-enabled workstation is that it provides performance that rivals 

supercomputing clusters at desktop price-points.  

GPU technology has been used in related prior work. For example, Komatitsch et al [15] 

implemented a finite-element-based earthquake simulation on a single GPU using CUDA. A 

finite-differenced wave equation, known as the Anelastic Wave-Propagation-Olsen-Day-Cui 

model, was accelerated using GPUs by Unat et al [16]. Without discussing specific theoretical 

differences between prior work and this paper, it is worth noting that the work by Unat et al  

used Mint [17], an automated tool for C-to-CUDA conversion. It was also limited to 

implementation on several CPUs with a single GPU device each. Work by In comparison with 

[15] and [16], the present work uses customized CUDA code and is generalized to clusters of 

machines with multiple GPUs. 

This paper is organized as follows: Section 2 provides a functional overview of VC code and 

describes its computational components. Section 3 discusses the methods used to implement VC 

on GPUs. The computational experience and acceleration results are presented in Section 4. 

Conclusions and avenues for future work are discussed in Section 5. 

II. Functional Decomposition of Virtual California 

As described earlier, Virtual California is a model that includes stress accumulation and 

release, as well as stress interactions on the San Andreas and other adjacent faults (Figure 1 [32]) 

[18], [19], [20], [21]. The model is based on a set of mapped faults with estimated slip rates, a 

prescribed plate tectonic motion, potential earthquakes on all faults, and elastic interactions [18], 

[22], [23], [24]. Earthquake activity data and slip rates on these model faults are obtained from 

geologic databases.  In contrast to the recent past, VC simulations now include dipping strike 

slip, thrust, and normal faults. Similar types of simulations have been developed by others [25], 

[26], [27], [28], [30].  

Loading of each VC fault segment occurs due to the accumulation of a slip deficit at the 

prescribed slip rate of the segment (“backslip model”). The vertical rectangular fault segments 

interact elastically. Earthquake initiation is controlled by friction coefficients along with the 
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space- and time-dependent stresses on fault segments which are computed by means of boundary 

element methods. Historical earthquakes are used that have moment magnitudes       in 

California during the last 200 years to prescribe the friction coefficients. A consequence of the 

fault segmentation is that the simulations do not generate earthquakes with magnitudes less than 

about      . 

Using VC, it is possible to construct simulated interferograms associated with major 

simulated earthquakes (Figure 2). These can be quantitatively compared to actual interferograms 

[31]. 

A. Computational Overview of the Simulation 

VC is an efficient, parallel object-oriented C++ numerical code that runs on NASA HEC’s 

Columbia system and JPL’s COSMOS computer using Message Passing Interface (MPI) 

protocols. Figure 3 shows the path of execution in a parallel simulation running on multiple 

processors either on a cluster, multi-core machine or GPUs. Note that the figure shows the 

splitting of the execution across multiple parallel processors and the global reduction operations.  

The execution is divided into three distinct phases:  

1. Initialization: The initialization phase begins by parsing the specified model and the 

simulation parameters. If the simulation is running on multiple processors, the initialization 

process partitions the fault elements. This partitioning tries to ensure that each processor is 

responsible for roughly an equal number of elements and that elements on the same 

processor are on the same fault or geographically close to each other. Next, each processor 

calculates stress influences by all model elements upon the local elements. The core of the 

simulation involves cycling between two main phase: i) determining long-term stress 

buildup in the system, and ii) propagation of a rupture through the system. These are 

shown by the lower two-thirds of Figure 3. 

2. Long-Term Stress Interaction: The simulation begins in the long-term stage by calculating 

the rate of long-term stress buildup for each element. In a parallel simulation each 

processor determines when each of the local elements will rupture. This is then globally 

reduced to finding when and where the first rupture will occur. Once this is determined, the 

rupture is propagated through the system.  

3. Rupture Propagation: First, the ruptured elements are processed and their new stresses are 

communicated through the system. Each processor recalculates the effects of this change 
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on the stresses of their local elements and determines which, if any, have ruptured. If any 

of the processors experience further ruptures, the rupture propagation phase continues. This 

phase generally involves multiple propagation steps until all the earthquake computations 

are complete. Once there are no more ruptures, the simulation returns to the long-term 

stress calculation. The simulation is terminated after the specified number of simulation 

years have elapsed. 

B. VC Code Profiling 

A parallel version of VC has been implemented on a cluster using MPI and C++; this work 

is described by Heien et al [32]. The performance of this MPI implementation was evaluated 

using the northern California fault model shown in Figure 1 with           segments in 6 

layers. The simulation was run on a 16-node cluster, with each node having 24 GB of RAM and 

two quad core Intel Xeon processors running at 2.4 GHz and with all nodes connected by a 

Gigabit Ethernet switch. The VC simulation was performed for a simulation time of 100,000 

years. For a single processor, most of the time is spent in stress calculation (69.1%) and Green’s 

function calculation (27.5%). Very little time is spent in rupture propagation (3.2%) or 

communication functions. As the number of processors increases, communication dominates the 

simulation time. By 16 processors the simulation spends the most time in communication 

functions (61.9%). Because of this the simulation fails to scale favorably with increasing number 

of processors. 

This study also noted that as the number of elements increases, the following behaviors are 

note: i) the proportion of time spent in performing the matrix vector multiplication increases, and 

ii) the proportion of time spent in creating the Green’s function matrix and the rest of the 

functions in the application decreases. 

III. Acceleration of VC on GPUs 

Based on profiling the VC code on CPUs, it was found that the two segments of the 

simulation that perform the best when accelerated are the Green’s function matrix construction, 

followed by the stress propagation using matrix-vector multiplication. Prior to the Green’s 

function matrix calculation, fault elements, obtained from the user-specified fault models, need 

to be partitioned across different nodes using a partitioning scheme. Let   be the total number of 

fault elements and   be the number of nodes in a cluster. Each node is assigned a subset of fault 
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data, which is given by    , where   is the number of nodes. Using MPI, fault assignment to 

each individual node is also broadcast to all other nodes so that each node can keep track all 

assignments. Maps are also maintained on each node to help keep track of other nodes' fault 

assignment. 

Acceleration of Green’s function matrix calculation and stress vector propagation are 

discussed in the following subsections. 

A. Acceleration of Green’s Function Matrix Calculations 

A two-level nested loop which iterates of rows and columns is used to generate the entries of 

the Green’s function matrix in the VC model. These matrix elements are calculated using closed-

form analytical expressions given by Okada [33]. There are 232 Okada functions, which were re-

implemented using CUDA for execution on the GPU.  

The features that makes Green’s function matrix generation suitable for GPU 

implementation are:  

1. Independence: Calculation of each entry of the Green’s function matrix is independent of 

the others and hence they can be generated concurrently in parallel.  

2. Degree of Parallelism: The total number of parallel threads for the problem is equal to 

number of entries in the matrix (   , where   is the number of fault elements. For 

instance, an all-California problem at 3 km resolution consists of 11,291 elements, 

providing potentially 127 million parallel threads. It may be observed that the degree of 

parallelism can be very high.  

3. Arithmetic Intensity: Arithmetic intensity is defined as the number of computations 

performed per memory transaction. For every entry of the matrix,        to        

mathematical operations are performed to obtain the output values starting with as few as 

   input double-precision floating point numbers.  

On each multi-GPU supporting node, Green’s function matrix (also called the stress 

influence matrix) is generated from the fault data on multiple GPU devices. This step consists of 

calculating two matrices, one each for shear and normal stress coefficients. The function that 

generates the Green’s function matrix first determines the correct matrix sizes to allocate for 

each GPU device, taking into account odd data sizes. Hence each GPU on a node should have 

approximately two matrices of size           , one for shear and one for normal stress. In 

the foregoing formula,    denotes the number of GPU devices on the  th node. 
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The stress influence matrices on each GPU only contain a portion of the fault data. The 

function then concurrently performs Green’s function evaluations on all of these GPU devices.  

Parallelization is achieved using the OpenMP API, which provides support for shared-memory 

parallel thread management and programming within a machine. Thus the function creates as 

many computing parallel threads as the number of GPU devices, where each thread handles its 

own Green’s function calculation on a single GPU, using its own portion of the assigned fault 

data. 

Green’s function matrices are stored in column-major format and allocated with pitch 

memory to ensure global memory coalescing. Pitch memory refers to a CUDA practice when 

memory is allocated with padding to ensure coalesced memory access. This is because GPU 

memory access is most efficient when each kernel accesses contiguous memory blocks of the 

same size. This efficient memory management also speed up the matrix multiplication which is 

discussed in the next section.  

The computation of Green’s function matrices is also parallelized across multiple rows. 

Kernels are executed concurrently using the concept of streams and asynchronous memory 

transfers between host and the device. NVIDIA Fermi and later versions of the GPU support the 

launch of multiple kernels on the same GPU and concurrent execution of kernels on different 

streams. Consequently, the kernel can be invoked on different streams to achieve parallelization, 

with the kernel being responsible for computing one row of the Green’s function matrices. Each 

row of the matrix corresponds to one fault element that is assigned to the GPU. 

The calculation of each element in each row of the Green’s matrices is also independent of 

all the others and hence they can be generated concurrently in parallel.  

B. Acceleration of Stress Propagation Calculations 

After the Green’s function evaluations are complete on multiple GPU devices, the stress 

influence matrices (normal and shear) are stored on each GPU. Stress propagation calculations in 

VC are performed by using matrix-vector multiplication to determine the vector of stresses 

   
     on the various fault elements, given the vector of strains       on each element and the 

stress influence matrix    
  : 

         
        

        (1) 
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Matrix-vector multiplication in VC is parallelized by dividing the matrix columns into 

blocks, multiplying them with portions of the vector and accumulating the resulting sums into an 

output vector. These steps constitute a 2-D partitioning process of the matrix [34]. Note that in a 

matrix vector multiplication, each row of the matrix multiplies the entire input vector to generate 

one element of the output vector. This is implemented in parallel over the rows of the matrix, 

where thread   multiplies row   of the matrix    
   with input vector       to generate the  th 

entry in the    
     vector. The input vector       is stored in shared memory to enhance runtime 

performance.  

During the rupture propagation phase, the strain vector is typically sparse. The matrix 

multiplication then operates only on the non-zero elements of       to lower memory and 

computing requirements. The check for non-zero values in       introduces a conditional 

statement which can potentially cause warp divergence. In other words, each parallel kernel can 

require different amounts of time, which can reduce efficiency. However, divergence between 

parallel operations occurs in at most one addition and one multiplication. Moreover the check is 

performed on the vector only, since the block matrices are typically dense. Thus the benefits of 

performing limited number of computations on a sparse vector greatly outweigh any loss in 

efficiency due to the presence of conditional statements.  

At every stress evaluation stage, the strain vector       is copied from the host memory to 

the GPU global memory. Then the strain vector is divided into smaller segments B1, B2, B3, 

etc., depending on the maximum size that will fit in shared memory (Figure 4). The first segment 

B1 is next copied into the shared memory. The kernel multiplies the corresponding block A1 

from the    
  matrix with the shared memory segment B1 and the result is accumulated at the 

output. The second segment B2 is copied next, and multiplied with A2 to yield the next element 

of the output.  This process is continued until all the elements of the output stress vector    
     

have been computed. 

In VC, both the normal and shear stresses are calculated from the strain vector using the 

process described above. The normal and shear stress calculations are independent of each other 

and can be performed concurrently. As noted before, GPUs of the Fermi type and later support 

simultaneous launch of multiple kernels on the same GPU. While kernels in the same stream 

execute in order, one after the other, kernels on different streams can execute concurrently. 
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Given enough hardware resources, this process achieves task-parallelism in addition to the data-

parallelism.  

In the current GPU implementation, the kernels for calculating the normal and shear stresses 

are instantiated in separate streams on the GPU. The shear and normal stress calculations are 

then performed in parallel, if enough hardware resources are available. The foregoing process 

can be readily divided among multiple GPUs. Each GPU is apportioned a predefined number of 

blocks and segments and matrix-vector multiplications are performed independently on each 

GPU. The last step is that of merging the resulting vectors obtained from each GPU device. The 

function uses stream synchronization as a mechanism to wait for all GPU devices to complete 

their own matrix multiplication tasks. Once these are complete, the results may be merged in a 

straightforward manner. 

IV. Runtime Performance Evaluation 

A number of problems of varying resolutions were tested to assess the acceleration offered 

by implementation of VC on GPUs. These are listed in Table 1. 

The problems listed in Table 1 are arranged in order of the increase in the number of 

elements used to represent the faults in the state of California. For example, the ‘Parkfield’ 

model refers to a single fault in the Central California in the Carrizo Plain, modeled using 48 

elements, while ‘SAF’ refers to all faults of the main strand of the San Andreas Fault. The 

models starting with ‘AllCal’ consist of all faults in the state of California, but at different 

resolutions. For instance, ‘AllCal_3.0km’ consists of a model where fault elements are of the 

size          .  

The third column in Table 1 lists the memory required to store the Green’s function matrices 

for each problem. Device memory on the GPU is the constraint which determines how many 

GPUs are required to perform computations on a model of a given size. For example, an all-

California problem at           can be simulated on a single NVIDIA Kepler GPU but a 

finer resolution model such as the               problem requires at least two GPUs. 

The CUDA implementations of VC on single-GPU and multiple-GPU configurations were 

evaluated by comparing the results against the C++ implementation. The validation of results 

consisted of three steps. First, a direct comparison of the entries of the Green’s function matrices 

was performed. For small matrices (e.g. the Parkfield problem), the comparison was performed 
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by inspection. For larger matrices, comparison was performed by writing the matrix contents to 

files, loading them in an external scripting environment (Python), and calculating the Frobenius 

norm of the difference matrix.  

Second, stress values at the end of an iteration were compared. For small matrices, the 

elements of the stress vector obtained from the GPU and CPU implementations were manually 

compared. For larger matrices, the contents of the vectors were written to files, which were then 

loaded in an external scripting environment. The vector norm of the difference was then 

calculated. This test was performed at the end of every iteration to ensure that rounding errors 

did not accumulate. 

Finally, VC simulation stores the time of event occurrence and the magnitude of an event at 

all the faults in a simulation. The values from the VC simulation of the CPU code and GPU code 

were compared in order to ensure accuracy. 

Both implementations utilized double-precision floating point operations. Note that this 

requires that all GPUs on a node offer at least Compute Capability 2.0. It is possible to use VC 

with single-precision arithmetic, which can potentially enable the simulation of larger problems 

on fewer GPUs. However, this option can have implications on the accuracy of long-term 

simulations, especially when the statistical nature of the model is considered. 

A. Computational Platforms 

The foregoing problems were tested on four different configurations detailed in the 

following: 

1. Configuration 1: this configuration consists of two Intel Xeon E5620 CPUs with four 

cores each, operating at 2.4 GHz. The system has 72 GB of RAM available. A GPU is 

also available on this system, which was disabled when this configuration was used as the 

CPU benchmark run against which GPU implementation speedups were evaluated. 

2. Configuration 2: This configuration consists of one desktop computer equipped with two 

NVIDIA GPUs: a Tesla K20x (server-class GPU consisting of a Kepler GK110) and a 

Titan, each with 2688 cores, operating at 732 MHz,  with 6 GB of device memory each. 

This system is suitable for problems of resolution up to 2.1 km   2.1 km (AllCal_2.1km). 

3. Configuration 3: this is a node from the NVIDIA cluster, equipped with six Tesla K40 

GPUs (server-class GPU consisting of one Kepler GK110B) each with 2880 cores and 12 
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GB memory. This configuration can solve problems of the size associated with 

AllCal_1.5km.  

4. Configuration 4: consists of two nodes from the NVIDIA cluster; each node has four 

Tesla K40 GPUs. This configuration was used to test the cluster-with-multiple-GPU 

version of VC. 

B. Acceleration Results 

Execution times for a 500-year simulation were calculated using the configurations 

discussed in Section 4.1. The execution times from Configurations 2-4 were compared with 

those from Configuration 1 in order to assess the speedup obtained using the single- and multi-

GPU implementations of VC. These are reported in Table 2. Shaded cells represent 

configurations that were not tested. In a small subset of cases, either no speedup was observed, 

or using a GPU produced slower performance. This is because the benefit of a large number of 

GPU cores is outweighed by its slower clock speed and the overhead associated with memory 

transfers between the CPU host and GPU devices. An example of the first case is given by 

Problem #1 with 48 fault elements, and an example of the latter case is seen when moving from 

1 GPU to 2 GPUs in Problem #5 with 11,291 fault elements. However, in general, the speedup 

using a GPU implementation over a CPU implementation was observed to have an accelerating 

trend with the size of the problem.  Results indicate that higher speedup can be expected for 

larger problems when implemented on clusters of CPU nodes with multiple GPUs each. 

Performance in some of the other larger problems could not be carried out because the CPU-

GPU clusters were available only on a limited basis.  

The acceleration trend for a single node with 1, 2, and 6 GPUs is shown graphically in 

Figure 5. In this figure, the solid black vertical line indicates the number of elements in an all-

California simulation with a fault element resolution of            . This problem will be 

composed of 418,660 fault elements and is expected to require 2.6 TB of memory to store the 

stress influence matrices. Ongoing research is aimed at reducing the amount of memory required 

for storing matrices in very large problems. 

The best performance in the present research was obtained for the                

resolution problem which consists of 46,033 fault elements. This problem, when executed on a 

CPU with 16 concurrent threads, requires more than 2 days for a 500-year simulation. The same 

problem on a system with 6 GPUs requires less than 1 hour. Utilization of a cluster of computers 
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with multiple GPUs is therefore a key technology crucial for simulating higher-resolution models 

at          ,            , or finer. 

The VC speedup on GPUs reported in this paper is strongly dependent on the acceleration of 

Green’s function matrix construction and the stress propagation. For the simulation examples 

considered in this paper, the stress propagation dominated the computation time since the 

matrices are only constructed once at the beginning of the simulation. For long-term simulations 

with parameter updates, the Green’s function matrices may require periodic recalculation. This 

can potentially improve speedup because of the truly independent nature of element-wise 

calculation in the stress influence matrix. 

V. Conclusion 

This paper outlined the process of implementing the Virtual California earthquake 

simulation software on a system with one or more CPUs and GPUs to leverage the large number 

of parallel threads that can be executed at an instant on these architectures. The algorithms 

constituting the earthquake simulations are parallelizable but the native C++ implementation 

require several hours of computation time on clusters consisting of CPUs for modest problem 

sizes. The native code was analyzed and profiled to identify functions which required the 

greatest amount of computational resources based on the proportion of computing times 

consumed, relative to the overall execution time. These functions were then accelerated in order 

to achieve the biggest payoff in performance.  

The CUDA-enabled software can be executed on a cluster of CPUs consisting of nodes 

equipped with one or more GPUs. The software utilizes MPI to communicate and share memory 

and tasks between nodes, and OpenMP and CUDA to utilize parallel processing on GPUs on 

each node. 

The best performance achieved in the present research was in simulating the 1.5 km   1.5 

km resolution model of the faults in California.  This higher resolution model yielded a speedup 

of 56 , demonstrating that a 2-day simulation on a CPU-only machine with 16 concurrent 

threads can be performed in less than 1 hour on a computer equipped with 6 GPUs. 

It is evident from the observed results that using a CPU cluster equipped with multiple 

GPUs has the potential for further speeding up computations associated with Virtual California 

earthquake simulation code. Virtual California is an implementation of Virtual Quake which uses 
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California fault models specifically. Therefore in general, simulation of fault activity for larger 

geographical regions will also benefit from cluster-wide implementations. Furthermore, cluster 

implementation is essential to the ability of solving problems at resolution 1 km × 1 km or finer. 

Further research is required in the GPU implementation of algorithms such as Barnes-Hut for 

exceptionally high resolution problems such as 100 m × 100 m, in order to exploit compressed 

forms of the stress influence matrices for stress propagation calculations. 
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List of Tables 

Table 1. List of VC Problems 

Model Name No.  of Fault  

Elements 

Size of Green’s 

Function Matrix 

Parkfield 48 24 KB 

SAF 1,508 17.48 MB 

AllCal2_Trunc4905 4,905 183.82 MB 

AllCal2_Trunc7453 7,453 423.96 MB 

AllCal_3.0km 11,291 2 GB 

AllCal_2.1km 25,700 7 GB 

AllCal_1.7km 29,496 19 GB 

AllCal_1.5km 46,033 33 GB 

 

  

Table 2.  Simulation Time and Speedup on CPU, single GPU, multiple GPUs, and Cluster 

Elements 1 node CPU 1 node   1 

GPU 

1 node   2 

GPUs 

1 node   6 

GPUs 

2 nodes   4 

GPUs 

48 < 1s 1s (<1 )  

1,508 15s 5s (3 ) 

4,905 2m 46s 15s (11 ) 

7,453 6m 11s 28s (13 ) 

11,291 1h 26m 2m 31s (32 ) 2m 38s (32 )  2m 17s (37 ) 

25,700 3h 11m Out of 

Memory 

5m 32s (35 ) 4m 39s (41 )  

29,496 12h 17m Out of 

Memory 

Out of 

Memory 

14m 58s (49 ) 

46,033 48h 33m Out of 

Memory 

Out of 

Memory 

52m 15s (56 ) 
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List of Figures 

 

Figure 1. Fault Model used in Virtual California Simulation 
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Figure 2. A Northern California VC Fault Model with Overlaid Interferogram from a Simulated 

1906-Type Earthquake 
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Figure 3. Execution of Virtual California on a Parallel System 
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Figure 4. Parallel Matrix-Vector Block Multiplication and Accumulation 
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Figure 5. GPU Speedup as a Function of Problem Size and Number of Available GPU Devices 


