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A nonlinear, non-Gaussian Particle Filter is considered for engine health parameter estimation. The 

algorithm employs a high-fidelity full engine model as its central element to overcome the performance 

limitations imposed by the Gaussian noise-linear dynamics assumptions required in the Kalman filter 

formulation of the problem.  A central feature of the present estimation problem is that the number of engine 

health parameters to be estimated is often greater than the number of available sensor measurements. This 

renders the linearized engine dynamics not fully observable. However, using an analysis of the high-fidelity 

engine model, it is shown that the system may be fully observable in a nonlinear sense. It is also shown that the 

system observability can be enhanced by using specific inputs. Ensuing particle filter implementation 

demonstrates that the number of parameters that need to be estimated by the particle filter can be greater 

than the number of available measurements, implying that nonlinear filters can overcome the non-

determinism imposed by linear Kalman filters.  

I. Introduction 

The use of an engine model for the estimation of engine performance has been a key concept in next-generation 

engine control and health management1
-
6. Since thrust cannot be directly measured, an engine model is used to 

compute the thrust from available measurements. However, for this process to work accurately under varying ambient 

conditions and deteriorating engine components an estimation process has to be employed to ensure smooth, stall free 

operation of the engine. Additionally, the estimated parameters can be used for health management, engine 

performance trend monitoring and gas path fault diagnostics. As a consequence, accurate assessment of the 

performance deterioration of engine components over engine lifetime and accurately detecting the malfunctioning of 

engine systems that manifest as a deviation from reference engine responses are expected to play a central role in 

effective engine diagnostics and maintenance.  

The left portion of Figure 1 depicts a general architecture for engine performance estimation.  

 

Figure 1. Engine Performance Estimation Architecture for Particle Filtering 
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The variable   denotes actuator commands,   denotes the measurements available via engine instrumentation such as 

pressures, fuel flows, temperatures, and rotor speeds,   denotes an engine health parameter vector associated with 

efficiencies and capacities of fans, low-pressure compressor (LPC), high-pressure compressor (HPC), low-pressure 

turbine (LPT), and high-pressure turbine (HPT). With an engine model employed, engine performance estimation is 

carried out iteratively. The employed engine model generates the expected sensor measurement  ̂  and the state 

estimate  ̂ which, together with  , is used to update the estimate of the engine state and the health parameters. The 

estimated health parameter vector  ̂ is again used to update the expected sensor measurement  ̂ and the expected 

engine performance  ̂ that can be obtained as a function of the engine state and the engine health parameters.  

The particle filter approach addressed in this paper is motivated by the facts (1) that most existing estimation 

methods employ piecewise linear engine models and (2) that the use of linearized models are necessitated due to the 

use of  Kalman filters (or their variants) that places restrictions on system models and noise characteristics.  Kalman 

filters (and their variants) require that the process noise and the sensor noise be Gaussian and that the underlying 

system be linear. While these assumptions lead to an analytical, elegant filter solution for linear systems, a 

fundamental question that arises in application to nonlinear systems, such as aircraft turbofan engines, is what 

undesirable effects are introduced because of the requirement of linear system models with Gaussian noise. 

Following are the technical issues related to estimation approaches based on linear systems for engine health 

monitoring.  

Firstly, in order to approximate a nonlinear system by a series of linear systems, the following steps should be 

employed.  

 A set of trim points must be obtained by trim-solving routines and stored. 

 System matrices with respect to the above trim points should be derived and stored. 

 A set of schedule parameters, such as Mach number, altitude, engine health parameters, should be 

selected and tabularized. 

 Between trim points, the system matrices should be interpolated. Beyond the trim points, the system 

matrices should be extrapolated, however, in this case, the system responses obtained by extrapolation 

can significantly deviate from the true responses of the engine6. 

Secondly, a linearized system may not be observable while the original nonlinear dynamic system is observable. 

A fundamental problem in Kalman filter-based health parameter estimation is that the problem is under-determined 

because the number of sensor measurements is less than the number of parameters that reflect the deterioration of 

engine performance. This fact may make the linearized system unobservable. In this case, the culprit for this loss of 

observability may be the linearization process. It is possible that the system is observable only through the nonlinear 

components of the model, which have been eliminated by the linearization process. The effect of linearization is also 

present in assessing a nonlinear performance variable. For example, stall margins are inherently nonlinear, and the 

linearized systems tend to exhibit mismatch with a nonlinear high-fidelity mode6.  

Thirdly, linear systems cannot model inherently nonlinear phenomenon such as physical bounds on the state and 

the health parameters,  such as limits on maximum fan and core speeds, limits on turbine blade temperatures because 

of structural strength, limits on pressure to compressor and fans due to stall, and limits on maximum turbine inlet 

temperature for the duration of engine life. There are approaches that handle state constraints in Kalman filtering7, 

but they tend to be much more complex than conventional Kalman filters. 

Finally, Gaussian noise assumption can be restrictive. It has been shown that when there are outliers in the 

measurements, the fault detection algorithm optimized for Gaussian noise can exhibit significant performance 

degradation8
, 
9.  Moreover, the Gaussian noise model is not appropriate for defining random variables that have hard 

physical bounds.  

As an approach to overcome the limitations posed by Kalman filters, Particle filters (PFs)
 10, 11

 are employed, in 

which a high-fidelity nonlinear engine model is incorporated without any modification or linearization. Specifically, 

it is proposed to use the NASA (National Aeronautics and Space Administration) C-MAPSS40K (Commercial 

Modular Aero-Propulsion System Simulation for 40,000 lb class thrust engine) in the estimation scheme as shown 

Figure 1. The key idea of the PF is to represent the system uncertainty distributions using a cloud of particles instead 

of the state estimate and error covariance matrix employed in a Kalman filter and its variants, such as an Extended 

Kalman Filter (EKF) and an Unscented Kalman Filter (UKF). The PF formulation has its basis in the Monte Carlo 

simulation technique. However the PF incorporates a specific process called resampling, in order to choose more 

important high-weighted particles and to discard lower weighted particles. Although the approach taken by the PF 

does not lead to an analytical solution, it imposes no restrictive assumptions on the system dynamics or statistical 

distributions of the uncertainties. Consequently, it can provide excellent results in highly nonlinear dynamic systems 
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with non-Gaussian noise sources. In particular, the PF can be much more effective for a system whose uncertainty 

distribution is multi-modal, i.e., the probability distribution has more than one peak, or in heavy-tailed distributions
12

. 

More traditional filters like the EKF and the UKF
13

 which approximate all uncertainties as a unimodal Gaussian 

distribution functions will perform poorly in such cases.  

This paper presents the observability analysis of C-MAPSS40K engine model with a set of sensor measurements 

and show that the system is indeed observable in the nonlinear sense while the linearization around an engine trim 

condition leads to an unobservable system. Moreover, it is shown that PF-based nonlinear estimation also allows for 

the estimation of more health parameters the number of which is larger than that of available measurements. The 

paper is organized as follows. The engine performance estimation problem is formulated as the estimation problem 

for engine health parameters in Section II. An observability analysis both in linear and nonlinear senses is presented 

in Section III. The nonlinear observability forms the basis for PF-based nonlinear filtering described in Section IV 

that also includes an example that illustrates the overall concept. The performance of particle filtering with the NASA 

C-MAPSS40K engine model is presented in Section V.  Conclusions are given in Section VI. 

II. Problem Formulation 

Figure 2 shows the engine schematic with flow labels in Reference 14.  

 

Figure 2. Twin Spool Engine Schematic with Flow Labels
14

  

The C-MAPSS40K engine model employs 7 states (with the option for including or excluding temperature variables) 

and 13 health parameters. However, following the problem formulation in Reference 4, the estimation problem for 2 

states and 10 health parameters are considered as a baseline problem,  which exclude the pressure ratios for Fan, 

LPC, and HPC out of 13 health parameters. The system states, health parameters to be estimated, and the available 

sensor measurements considered in the estimation problem are given in Table 1. 

Given the state variable and the health parameters in Table 1, the engine dynamics are governed by general 

equations of the form:   

 

 ̇   (       ) 

   (        ) 

    (       ) 

(1) 

where   [     ]
 

    represents the engine state vector. The vector   [                     ]
 

    is the 

vector of measurements, and   is the vector of unmeasured performance variables such as stall margins and the thrust. 

The vector   [                                                 ]
      denotes the engine health 
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parameters shown in Table 1. The functions  ( ) and  ( ) are characterized by C-MAPSS40K engine model , and   

denotes the additional parameters that are required to run C-MAPSS40K engine model. More specifically, they 

denote engine operating condition variables such as ambient temperature, Mach number, the altitude, power options, 

target Engine Pressure Ratio (EPR). Finally, the vector   denotes the control variables of fuel flow, Variable Stator 

Vane (VSV) position, and Variable Bleed Valve (VBV) angle.   
In the engine performance estimation problem, the input parameter vector   is treated as a system state, which is 

constant vector, and  the model employed in the estimator development has the form: 

 
  ̇   

 
(      ) 

   (      ) 
(2) 

where    [   ]      and  
 
(      )  [ (      )  ]

 .  The control signals   and the additional function 

parameters   are treated as known variables. Then the questions addressed in the paper are posed as follows.  In 

linear Kalman filtering, estimating the health parameters whose number is larger than the dimension of   is infeasible 

because linearization leads to unobservable system. Is C-MAPSS40K engine model is observable in a nonlinear 

sense? If the engine model is nonlinearly observable, can a PF, which is a nonlinear estimator, improve the estimation 

performance? 

Table 1. States, Health Parameters, and Measurements of the CMAPSS-40K. 

States ( ) Health Parameters ( ) Measurements ( ) 

  , fan speed      , HPT Efficiency    , LPC outlet 

temperature  

  , compressor speed      , HPT Capacity    , exhaust temperature  

     , LPT Efficiency    , turbine outlet pressure  

     , LPT Capacity   , fan speed  

     , Fan Flow Efficiency   , compressor speed  

     , Fan Flow Capacity    , burner inlet static 

pressure  

     , HPC Efficiency  

     ,  HPC Capacity  

     , LPC Efficiency  

     , LPC Capacity  

 

III. Observability Analysis 

Observability analysis can help determine if the estimates of the system states and parameters can be derived from 

the given the initial conditions, inputs, system dynamics and the output equations, and the measurements. This 

section examines the observability of the engine states and parameters from a given set of measurements.  In the 

following, the symbol   in Equation (1) is dropped for the simplicity of presentation. As it constitutes the known 

variables, it does not affect any analysis presented below. 

A. Observability Rank Test 

When the system in Equation (1) is linearized with respect to a trim condition at (     ),  the resulting linearized 

system is given by: 

      
 ̇            

 ̇   
 

           
(3) 

where       ⁄ |     
 ,       ⁄ |     

,       ⁄ |     
,       ⁄ |     

,        ⁄ |     
, and   

    ⁄ |     
, which further leads to the following augmented linearized system: 

      
 ̇            
          

(4) 

where 

         [
  

  
]      [  ].  
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Then, the linearized system is observable if and only if the following observability matrix
15

 : 

  (     )  [  
 

  
   

  (  
(   )

)
 
]
 

  

has the full rank, where   denotes the dimension of the augmented state   . 
A standard result in Kalman filtering is that when the system in Equation (2) is linearized, the number of health 

parameters that can be estimated is limited to the number of sensors, the dimension of   
16, 

4. This renders the engine 

performance estimation problem unobservable because the dimension of the health parameter vector is usually larger 

than that of the measurement.  

In nonlinear systems, there have been two similar concepts that are related to the estimation of parametric 

constants and system states. They are observability and identifiability
17

. Whereas the observability denotes the 

feasibility of deducing the states of the system from given input-output behavior, the identifiability represents the 

feasibility of estimating the parameters of the system uniquely from inputs, outputs, and their time derivatives. 

Necessary and sufficient conditions for the identifiability for nonlinear systems have been established in References 

18 and 19. The relationship between the identifiability and observability is addressed in Reference 20.  For 

observability tests, there have been differential geometric approaches
22

 and algebraic approaches
20

, and their 

equivalence has been established under certain regularity assumptions
21

.  

One distinguishing feature of nonlinear observability analysis is that, unlike the observability test for linearized 

dynamic system, the control signals play a significant role by providing the necessary persistency of excitation. 

Another difference is that whereas the linear observability considers a linear system in the neighborhood of a trim 

condition, and therefore the linear observability holds in the neighborhood of a trim condition, the nonlinear 

observability is considered in the neighborhood of any point. The local observability of the system in Equation (2) is 

guaranteed if 

      {  
 
(    )    (   

      ) (    )|          (5) 

for a given state and control  (    ), where   is the dimension of  , i.e.,     in the estimation problem in Section II. 

The operator   denotes the differential,   denotes Lie derivative, and    is the observability index for  th 

measurement
22

. In other words, if the observability rank condition in Equation (5) holds, the system state is 

observable in the neighborhood of    with the given control  . If the rank condition holds for any       , then the 

system is globally observable with the given control   . It is well known that observability of the linearized system is 

not guaranteed by the observability of the original nonlinear system, since the linearized systems only consider the 

slope of the outputs in relation to the system state.   

B. Observability Test with C-MAPSS40K Engine Model 

1. Computation of Differentials 

 

Suppose that    (  ) denotes a scalar output function. Then, the differential    is numerically obtained by: 

     
  

    

 
 (     

    )   (     
    )

  
           (6) 

The next step in Equation (5) is to compute  ( ̇)   (   
  ). It can be seen that 

 

    
   (  

 )  
  

   

  |     
  

  

  
 |     

  
  

  
   

  

  
(  

 ) (  
 ) (7) 

 

That is, for any   
  (     ),  ̇(  

 ) can be computed using Equation (7), which can be numerically computed by 

Equation (6). Subsequently,   (   
   (  

 )) is again obtained by applying the procedure in Equation (6) with    be 

replaced by (   
   (  

 ))
 
. This process can be repeated for higher order differentials.  

 

2. Observability Test  

The observability test is performed for the condition with the altitude of 791 ft, Mach number of 0.4, and the 

power level angle of    .  The engine is in 30% deteriorated condition from new engine condition. For the linearized 

dynamics, a trim solution is first obtained, and then system matrices    and    are derived. The observability test for 
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(     ) leads to the rank 8 for the observability matrix, which confirms that for the linearized system, only the same 

number of health parameters as the measured outputs can be estimated, as noted in Reference 4. The rank 8 of the 

observability matrix implies that the 2-dimensional state vector and 6 health parameters can be estimated. The 

nonlinear observability is tested by investigating the rank of    [  ( )  ( ̇)]   As the nonlinear observability is 

the local property of a point (    ), it is tested for a few points. 

 Figure 3 shows the results of the observability tests both in the linear (with respect to the trim condition) and in 

the nonlinear sense (in the neighborhood of a certain point). It may be noted that the system is observable in the 

nonlinear sense, implying that the linearization may be contributing to decreased observability. The nonlinear test 

result also shows the condition number of   .  

 

 

Figure 3.  Linear and Nonlinear Observability Tests  

IV. Particle Filter Description  

Particle filters belong to the class of filters known as nonparametric filters. They do not rely on a fixed functional 

form of the posterior
§
 such as Gaussians. Instead, they approximate posteriors by a finite number of values (cloud of 

particles), each roughly corresponding to a region in the state space. As the number of particles goes to infinity, the 

particles tend to converge uniformly to the correct posterior under certain smoothness assumptions. Particle filters do 

not make strong parametric assumptions on the posterior density and thus are well suited for representing complex, 

multimodal probability density functions. However, the representational power of these techniques comes at the cost 

of added computational complexity. Since the PF is a realization of Bayes filtering using a cloud of particles
10

, the 

following subsection will briefly review general Bayes filtering approach. Note the classical Kalman filter is a special 

case of the Bayes Filter when the system dynamics is linear and the noise components are Gaussian.  

A. Bayes Filter 

Consider  the following discrete dynamic system:    

 
    (         ) 

    (     ) 
(8) 

where    denotes the discrete system state. With slight abuse of notation,   and   still represent the discrete system 

function and output function in this section.  The process noise      and    are also added in the filter formulation.  

It is assumed that their probability distributions are known. Let the accumulation of measurements up to the current 

time step   be denoted by   , i.e.,    {   |            Then, the objective of filtering is to derive  (  |  ), the 

probability density function of the state    conditioned on the accumulated measurements up to the     time step. 

Three following major steps constitute the Bayes filter. 

1. The initial probability distribution  (  )    (  |  ) is assumed to be known. 

                                                           
§
 Posterior denotes a representation of the distribution of the estimate after including the measurement. 
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2. Given the known initial distribution for the state vector, subsequent probability distributions are obtained 

recursively. Given a previous probability distribution  (    |    ), the posterior distribution  (  |  ) is 

obtained by the following step. 

a. Prediction 

  (  |    )  ∫  (  |    ) (    |    )     
    

 (9) 

where  (  |    ) is the transitional probability density that is governed by the time marching 

function     (         ) in Equation(8). 

b. Update 

  (  |  )  
 (  |  ) (  |    )

 (  |    )
 (10) 

where  (  |  )  denotes the probability distribution of the output     conditioned on    and is 

governed by the measurement function     (     ) in Equation(8). 

B. Description of the Particle Filter Algorithm 

As noted before, the PF is a numerical implementation of the Bayes filter for nonlinear systems with non-

Gaussian noises using the idea of Monte Carlo simulation to create a large number of samples for the state variable 

(particles) from the specified distributions. That is,  (  |  )  ∑   
  (     )

  

   
, where    is the total number of 

particles, and  ( ) is the Dirac-Delta function. The first step in the PF algorithm is to initialize a set of particles 

according to the a priori distribution of the state at the first time step. 

 {   ̂ 
    

   

  
 (11) 

Here  ̂ 
  denotes the state of the  th particle at the first time step. The weight of each particle is denoted by   

  and the 

initial weights for all particles are assumed to be equal: 

   
  

 

  

          (12) 

Then the following loop, consisting of Equations (13) through (25), is recursively executed from the initial time to the 

final time step. Once the measurement    is available at the current time, the weight   
  for the  th particle can be 

calculated as follows: 

 {   
   (  | ̂ 

 )    
   

   

  
 (13) 

Here, the particle weight denotes the probability that the particle generates the observed measurement. Note that the 

measurement noise can be added to the particle measurement if a parametric form of the measurement uncertainty is 

not available. For example, this may be the case when the statistics of the measurement uncertainty depend on the 

state, or the measurement model is multiplicative. For example, when an uncertainty histogram is provided, the 

weight of the particle is proportional to the bin height of the histogram location of the measurement. The particle 

weights are then normalized by dividing the weight of each particle by the sum of the weight of all particles as shown 

in Equations (14) and (15). 

   ∑  
 

  

   

 (14) 

 {    
   

  
 

 
   

   

  
 (15) 

Once the normalized particle weights are available, the state estimate and its statistics are calculated from the 

particle values and weights. For example, when the expected value of the particles is used as the state estimate, the 

following formula is used: 
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  ̂  ∑  
  ̂ 

 

  

   

 (16) 

This is followed by the resampling step which draws    replacement particles from the current set of    particles, 

such that the probability of drawing each particle depends on its importance weight. The resampling step is a crucial 

part of the PF. In the absence of resampling, many of the particles end up in regions of low posterior probability. This 

is because of the state uncertainty at the previous time step and the perturbation due to the process noise while 

transitioning from the previous time step to the current. The resampling step refocuses the set of particles to the 

regions in the state space with high posterior probability. By doing so, the PF focuses the computational resources of 

the filter algorithm to the regions in the state space where they matter the most. Thus, the performance of the filter is 

maintained using a smaller number of particles. Equations (17) through (23) describe the resampling process. 

Resampling need not be performed at every time step. It is only performed when the number of particles in 

regions of high posterior probability falls below a predefined threshold. The metric used to determine the number of 

particles in regions of high posterior probability is denoted by      and is calculated as follows. 

        [∑(  
 ) 

  

   

] (17) 

Typically, resampling is performed when the effective number of particles falls below     of the total number of 

particles. The resampling process generates particles with replacement. Note that the resampled particles are denoted 

by an under bar. 

 [{ ̂ 
 
   

 
}
   

  
]          [{ ̂ 

    
 }

   

  
] (18) 

There exist a few resampling methods in the literature
23

. For example, the simple random resampling is carried out as 

follows. First a cumulative distribution function of the particle weights is calculated as shown by Equations (19) and 

(20). 

          (19) 

            
             (20) 

Then, a uniform random number is generated between   and  .  

 {      [   ] 
   

  
 (21) 

The index of the particle to be included in the resampled set is obtained from the following equation: 

 {                                   
  (22) 

The state of the     particle in the prior particle set is assigned to the     particle in the resampled set,and the 

importance weight is set uniformly.   

 {   ̂ 
 
   ̂ 

     
 
 

 

  

   
   

  
 (23) 

Then the particles are propagated to the next time instant as shown by Equations (24) and  (25). Since the 

individual particles are propagated numerically, any complex nonlinear function can be used in this particle filter 

framework. Equation  (25)  shows how the sampling in Equation (24) is performed; the process noise is sampled from 

a given noise distribution for the particle   
 , then the state at the next time step     

  is obtained by propagating the 

state with the sampled process noise following the system dynamics. Note that the noise process need not be additive 

as in Kalman filters. This is because the function   can be any form or any algorithm that can compute the next state 

given the state and the process noise. 

 {           ̂   
   (    | ̂ 

 )   
   

  
 (24) 
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 {   ̂   
   (  

   
 
 )      

  
   (25) 

This sequence of steps is continued till the final time step. 

 

C. An Example of a Particle Filter for a Linearly Unobservable but Nonlinearly Observable System 

Before delving into PF results with the C-MAPSS40K Engine model, the overall approach is illustrated by 

considering a simple example that leads to an unobservable linearized system but is nonlinearly observable. Consider 

a two-state system whose dynamics are given by the following equations: 

      
  ̇    (     )    

  ̇    (     )         
(26) 

The measurement model for this system is given as follows: 

         (     )       (27) 

The true trajectory is obtained by integrating Equation (26) with initial conditions   ( )      and   ( )      , 

over the interval   [   ], with time step        . In the present example, a variable step-size 4th-order Runge 

Kutta method with 5th-order error correction is used. The evolution of the true trajectory is shown in Figure 4. 

 

Figure 4. True States for System Given by Equation 

(26). 

 

Figure 5. Measurements for System Obtained Using 

Equation (27). 

 

Measurements for this system are defined by Equation (27) with additive zero-mean Gaussian measurement 

uncertainty whose variance is given by   
        The measurements are shown in Figure 5. Both the EKF and PF 

are initialized with initial state estimates given by  ̂ ( )      and  ̂ ( )      . The initial state covariance is 

given by  ( )      (     ).  

1. EKF Formulation 

A continuous-discrete EKF formulation
24

 is first implemented. In this approach, the system estimates are 

propagated in continuous time using the nonlinear model given by Equation (26), whereas measurements are made 

available at discrete time steps.  

The EKF utilizes a linearization of the measurement model when calculating the Kalman gain, and a linearization 

of the system dynamics when propagating the estimation error covariance matrix. At the  th time step, the 

linearization of the measurement model is denoted by    and the linearization of the system dynamics is denoted by 

  . These matrices can be calculated by taking the derivative of Equations (26) and (27) with respect to states    and 

  , and are as follows: 
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         [
  

   

  

   

]  [      ] (28) 

         

[
 
 
 
   
   

   
   

   
   

   
   ]

 
 
 

 [
  

      
] (29) 

2. Linear and Nonlinear Observability 

The convergence properties of the EKF depend on the observability of the linearized system. The observability 

matrix for this system is denoted by    and is given by: 

         [
  

    
]  [

    

        
 ] (30) 

Where    and    are obtained from Equations (28) and (29). Since the second row of    is equal to the first row 

scaled by –   , the rank of the observability matrix is at most 1, and the system is not fully observable when 

linearized. The EKF is therefore not expected to converge.  

It can be shown, however, that the system is nonlinearly observable. Nonlinear observability can be demonstrated 

by first taking the time derivative of the measurement equation: 

       ̇   ̇  
  

   

  ̇  
  

   

  ̇  
  

   

   
  

   

      
    (31) 

Linearizing the measurement and its time derivative without first linearizing the system dynamics preserves some of 

the nonlinear structure of the system. The local nonlinear observability is then governed by the rank of the matrix   , 

which can be obtained using Equations (27) and (31): 

         

[
 
 
 
  

   

  

   

  ̇

   

  ̇

   ]
 
 
 

 [
    

         
 ] (32) 

The foregoing matrix has rank 2 as long as     . 

3. PF Formulation and Comparison with EKF 

A PF is implemented for the foregoing problem. For the example,          particles are initialized by 

sampling from a bivariate Gaussian distribution with mean given by { ̂ ( )   ̂ ( ) 
  and covariance given by  ( ). 

At each iteration, residuals are calculated for each particle with respect to the measurement, using the measurement 

model given by Equation (27), and a Gaussian uncertainty model is used to update the weights.  

  
(a)    (b)    
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Figure 6. Comparison between Estimation Errors and Confidence Bounds Obtained Using PF and EKF 

 

The posterior mean and variance are calculated for both states, and compared with the EKF estimate and 

(co)variance. The comparison between PF and EKF for both states is shown in the foregoing Figure 6. The blue solid 

line and magenta solid line depict the estimation errors in the states, as obtained from the EKF and PF, respectively. 

The red broken line and the black broken lines depict the 3  confidence bounds, as obtained from the EKF and PF, 

respectively. For the EKF, these bounds are obtained by propagating the Riccati equation for the state covariance 

matrix, whereas in the case of the PF, variances are calculated from the particle weights. 

It is immediately obvious that the EKF is not able to successfully estimate the states of the problem. Whereas the 

estimation error in the second state converges to zero very slowly, the estimation error in the first state appears to 

converge to a non-zero bias. The estimation errors are well outside the 3  confidence bounds. It is also evident that 

the PF can successfully track the states, and the variance of the errors converges to steady-state values relatively 

quickly. The foregoing example is a relatively simple demonstration of the PF’s ability to leverage nonlinear 

observability in cases where the KF or its derivatives fail.  

V. Particle Filter Performance with the C-MAPSS40K Engine Model 

A. Simulation Scenario 

The performance assessment of the PF with the C-MAPSS40K engine model is approached in two steps. Firstly, 

under complete linear observability conditions, a KF and a PF are designed, and it is shown that the PF leads to the 

same level of performance as that of the KF. Secondly, it is shown that estimating more parameters than the number 

of measurements is not an infeasible problem if the PF is employed  for the engine in transient state. For this purpose, 

the control variable, the fuel flow rate, is altered for different scenarios. In the first scenario, the fuel flow rate is kept 

constant at 1.6. In the second scenario, the fuel flow rate is varied as shown by the blue line in Figure 7. The second 

scenario represents an engine undergoing transient operation, wherein the fuel flow rate is varied. Such transient 

operation has been found to improve observability of the nonlinear engine dynamics. 

 

 

Figure 7. Fuel Rate Variation used in the Present Study 

The system consists of 6 measurements, denoted by measurement vector     , and listed in Table 1. The 

measurement error is assumed to follow a Gaussian distribution, with standard deviation of the error equal to 0.25% 

of the steady state value for    and   , 0.75% of the steady state value for     and    , and 0.50% of the steady state 
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value for     and    . The standard deviation for fan speed measurement error, temperature measurement error, and 

pressure measurement error are denoted by   ,   , and   , respectively. 

B. Baseline Kalman Filter  with 6 Parameters Estimated 

A Kalman filter is implemented for the engine health parameters for the linearized system in Equation (4) at a 

trim condition (     ). The linearized system is further discretized with respect to time using an Euler integration 

scheme. Numerical experiments show that a time step of 0.015s, is sufficiently small for numerical stability of the 

Euler integration, with errors less than 0.1% in system states when compared with a 4th-order Runge Kutta integrator. 

The resulting linear, discrete, autonomous system is then given by the following: 

 
              

           
(33) 

where          , and    (   )  and    (   )  denote the process and measurement uncertainty, 

respectively. Both uncertainties are assumed to be zero-mean Gaussian in nature, with covariance matrices   and   

respectively. Whereas       ([  
    

    
    

    
    

 ])  is given by sensor noise characteristics,   is a tuning 

parameter chosen to adjust filter performance. 

Since the rank of the observability matrix  (     ) is 8, only 8 states are observable. It is assumed therefore, that 

parameters     ,     ,     , and      are known, and the remaining 8 states of the augmented state vector are to be 

estimated. The initial estimates of states    and    are set equal to their observed steady-state measurements, and the 

initial estimates of the health parameters are set to random values such that the standard deviation of the errors is 5% 

of the nominal (true) values. Initial uncertainty covariance matrix is set equal to a diagonal matrix; i.e. standard 

deviation of initial uncertainty is equal to 100 rpm for the fan and compressor speeds, and 1e-03 for the health 

parameters. Process uncertainty covariance matrix   is assumed diagonal with standard deviations of 1.2, 1.2, 0.0001, 

4e-6, 2.2e-5, 2.2e-5, 2.2e-4, and 2.2e-5 for the eight dynamical equations.  However, for the first 1.5 seconds of the 

simulation process uncertainty standard deviation is increased by ten times in magnitude to improve convergence 

properties of the filter. The estimation errors in the state  are  shown in Figure 8, with the estimation error being 

depicted by a blue solid line, and the 3  confidence bound as a red dashed line. Figure 9 shows the estimated health 

parameter as a blue solid line, superimposed on their true values, depicted by a black line. The feasible range of 

health parameter values is shown as a red, dashed line, whereas the    confidence bounds are indicated in magenta.  

  
(a) Fan Speed,     (b) Core Speed,    

Figure 8. KF Estimation Error in the State  
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(a)      (b)     

 

 

(c)     (d)     

 
 

(e)     (f)      

Figure 9. KF Estimates for Health Parameters 



 

American Institute of Aeronautics and Astronautics 
 

 

14 

C. Particle Filter with 6 Parameters Estimated 

A Particle filter was implemented for the estimation of 2 states and 6 parameters, with identical initial values to 

the KF estimator described in Section V.B. The PF implementation differs from the KF implementation in the 

following aspects. Firstly, although Euler integration is used to integrate particles through the system dynamics, the 

dynamical equations and the measurement model are not linearized. Instead, the system dynamics and measurement 

model process the particles in parallel using the nonlinear engine model. Secondly, the PF implementation utilizes 

histograms to represent the process and measurement uncertainty in the general case. However, arbitrary histograms 

are not explored in this research. Instead, discrete near-Gaussian histograms with finite support up to     limit were 

used to generate random numbers for the process uncertainty and for the measurement uncertainty. Thirdly, a key 

feature of the present problem is that the values of the health parameters are bounded in a given range. For instance, 

Figure 10 shows bounds for 10 health parameters, which have values for deterioration levels of 0, 0.5 and 1 (end-of-

life), and utilize linear interpolation for intermediate values of the deterioration level. 

 

Figure 10. Health Parameter Bounds 

 

Since values of the health parameter outside this range can be considered infeasible, at every step of the PF, the 

value of the health parameters in the particles representing the augmented state can be evaluated, and weights of 

those particles that have values outside the bounds can be set to zero. This ensures a more accurate domain of 

validity of the PF in comparison with the KF.  Finally, histograms of the augmented state can be constructed 

from the particles. For example, a histogram for parameter      is shown in Figure 11 (Left). Using the state 

Probability Density Function (PDF), the Cumulative Density Function (CDF) can be constructed numerically, as 

shown in Figure 11 (Right). The median of the distribution can be obtained by interpolation of the CDF and 

obtaining the value of the state where the CDF is equal to 0.5. At this point, the probability mass on either side is 

equal. Furthermore, the limits enclosing the 0.997 probability mass of the distribution can also be calculated. It 

should be noted that these limits can be asymmetric with respect to the median. When the distribution is 

Gaussian, this is equivalent to the expected value and the 3  bound of the distribution, respectively. However, 

when histograms with finite support are considered, this equivalence fails. Therefore, results with the PF will be 

depicted using the median, 0.997 probability mass limits, and the support limits of the histogram. 
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Figure 11. Probability Density of      at t=30s (Left), and Cumulative Density with Median and 0.997 

Probability Mass Limits (Right) 

 

The PF was implemented with 250,000 particles. Results of the PF implementation for an 8-state estimator are 

shown in Figure 12 and Figure 13. Upon comparing with the results from the KF, it is observed that PF performs as 

well as the KF and in some cases exceeds KF performance under identical conditions. For example, the 99.7% / 3  

bounds are noticeably smaller in the PF. 

 

 
 

(a) Fan Speed,     (b) Core Speed,    

Figure 12. PF Median Estimates and Dispersions for the State  
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(a)      (b)     

 

 

(c)     (d)     

 
 

(e)     (f)      

Figure 13. PF Median-Estimates and Dispersions for Health Parameters 
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D. Particle Filter with 7 Parameters Estimated 

 

1. Particle Filtering Results 

 

This corresponds to the case where the number of health parameters to be estimated exceeds the number of 

measurements. It has been noted in Section III.B that this case is unobservable in a linear sense, and a conventional 

KF will fail to converge. The linear observability analysis shows that two states (fan and compressor speeds) and six 

parameters can be estimated using six measurements.  In this section, the PF is used to estimate an additional 

parameter,      by exploiting the nonlinear observability. Towards that end,  the transient engine performance 

scenario is used. This is achieved by varying the fuel flow rate as shown in Figure 7. This ensures that the time 

derivatives of the fan and core speed, denoted by   ̇ and   ̇ are never zero and the measurement themselves exhibit 

variation with time. 

The estimates for the nine augmented states are shown in Figure 14 and Figure 15. In addition to the eight 

augmented states listed in Section V.C, the high pressure turbine efficiency parameter      is also estimated. It is 

evident from the results that under transient engine operating conditions, the PF can enable the estimation of more 

than the six health parameters. Additional parameters can possibly be estimated by a combination of proper filter 

tuning and selection of a sequence of engine transient operating conditions. 

 
 

(a) Fan Speed,     (b) Core Speed,    

Figure 14. PF Median Estimates and Dispersions for the State in Transient Operation 

 

 

 
 

(a)      (b)     
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(c)     (d)     

 
 

(e)     (f)      

 

 

(g)      

Figure 15. PF Median-Estimates and Dispersions for Health Parameters 

2. Discussions on Posterior Distributions 

 

A closer examination of Figure 15 (b) depicting the estimate of the fan flow capacity parameter      shows that 

the median of the posterior state PDF has a small bias with respect to the true value. Further analysis shows that this 
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is a consequence of a multimodal posterior PDF, in which neither the median nor mean is necessarily the best statistic 

to compare with the true value. This is because the median or the mean of a bimodal distribution can lie in a region of 

very low probability of occurrence, between two or more regions with high probability of occurrence.   

The time evolution of the posterior PDF of      is shown as a series of ‘snapshots’ in Figure 16. The initial 

distribution is shown in Figure 16 (a). Although the distribution was assumed unimodal (the underlying distribution 

from which the histogram or discrete PDF. is constructed is Gaussian, multiple peaks appear in the initial part of the 

simulation Figure 16 (b). This may be a consequence of the nonlinear C-MAPSS40K engine model. 

As time progresses, with the availability of measurements, the multiple modes resolve into two strong modes. The 

true value, shown as a solid red line, corresponds to one of the peaks of the distribution. Addition of larger process 

uncertainty can possibly accelerate the convergence of the two modes into one, at the cost of increasing the support of 

the distribution and larger confidence bounds. Due to the presence of two modes, the median of the distribution is 

shifted from the correct mode, and this results in the bias observed in Figure 15 (b). 

 

(a)      

 

(b)        

 

(c)        

 

(d)       



 

American Institute of Aeronautics and Astronautics 
 

 

20 

 

(e)         

 

(f)       

Figure 16. Time Evolution of Posterior Probability Density Function of Fan Flow Capacity Parameter 

VI. Conclusions 

This paper addresses the feasibility of employing particle filters for the estimation of engine health parameters. 

The investigation of nonlinear observability for C-MAPSS40K engine model forms the keystone for the nonlinear 

particle filter approach. Nonlinear observability test shows that the number of engine health parameters that can be 

estimated is not limited by the number of measurements. It is shown that a nonlinear estimation approach such as 

particle filter can exploit this fact and can estimate more engine health parameters than the number of available 

measurements.  Investigating an example posterior probability density function for a engine health parameter reveals 

additional nonlinear nature of the engine health parameter problem: multimodal probability distributions. 

While this paper demonstrates the feasibility of nonlinear estimation for engine health parameter estimations, the 

intricate relations between the control signals and the number of engine health parameters are not fully investigated. 

An in-depth investigation for the interplay between the control signals and estimation performance of nonlinear 

estimation methods with a high-fidelity engine model is left for future research.  
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