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This paper describes the development of a decision support system that uses real-time 

track data to estimate statistical parameters describing the stochastic traffic flow. Modern 

statistical decision theory is then applied to optimize traffic flow. An advanced estimation 

algorithm provides the parameter estimates based on queuing network models of traffic 

flow. A hypothesis testing approach is developed for triggering traffic flow management 

initiatives in the terminal area, and a stochastic quadratic programming methodology is 

advanced to achieve flow control objectives such as runway load balancing.  The use of this 

methodology is demonstrated using multi-day track data from the San Francisco terminal 

area. It is shown that the methodology can correctly identify the need for restricting the 

traffic flow into the terminal area, and provide decision support to balance the traffic flow at 

the runways under uncertain traffic flow conditions.  The approach developed in this 

research can be extended to the creation of decision support tools for a wide variety of 

stochastic air traffic flow control situations. 

I. Introduction 

everal research efforts are underway at NASA on air traffic flow management (TFM) using advanced iterative 

numerical algorithms
1-8

. These algorithms are being considered not only for strategic TFM in the National 

Airspace System (NAS), but also in managing surface traffic flows.  While these algorithms can provide precise 

solutions to the traffic management problem, they are more suitable for predictive control based on deterministic 

data. Traffic flow control in the presence of uncertainties inherent in the air traffic management system requires the 

integration of estimation algorithms to derive the stochastic description of traffic flow, followed by the application 

Statistical Decision Theory
9
 to either trigger iterative numerical algorithms or to create stochastic flow control 

decisions. The focus of the present research is on stochastic traffic flow control and resource management in the 

terminal area and the runways. 

Under normal circumstances, the aircraft are allowed to operate according to their intent, and no major traffic 

flow management initiatives are necessary to ensure smooth operation. However, various perturbing influences such 

as adverse weather require traffic flow management initiatives to be brought into effect to match the available 

capacity with the demand. The objective of TFM algorithms on the surface as well as in the air is to mitigate the 

impact of these perturbing factors on traffic flow before they actually become disruptive.  

TFM is generally initiated upon the detection of adverse events in the air traffic environment. For instance, low 

visibility conditions may restrict simultaneous operations on closely-spaced parallel runways. Once adverse traffic 

flow conditions are predicted to occur, the TFM algorithm can be initiated to mitigate them. Since the predictions 

are generally based on uncertain data, it is important to rule-out traffic flow restrictions cased by minor flow 

transients or due to the naturally occurring variability in the traffic. Consequently, decisions to initiate traffic flow 

management must explicitly recognize the stochastic nature of traffic flow. Since the uncertainties in the system 

cannot be precisely predicted, the traffic flow parameters must be estimated from actual measurements, followed by 

the application of methods from Statistical Decision Theory
9
 to create actionable decisions.  
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 Queuing network models
10-13

 can capture the essential stochastic features of traffic flow using three sets of 

stochastic parameters, namely, the inter-arrival time distribution, service time distribution and the inter-node flow 

fractions. Because the queuing model parameters are based on aggregated data, and because the queuing network 

can provide the statistical distributions of the variables of interest, this model is suitable for use as the basis for 

formulating stochastic estimation algorithms. A recent research effort
14-18

 discussed a family of queuing network 

models suitable for modeling traffic flow in the NAS. It was demonstrated in Ref. 17 that these models can 

accurately predict the statistics traffic flow, at a fraction of the computational time required for explicit Monte-Carlo 

simulations.  

The stochastic traffic flow parameters derived from the estimation algorithm can be used as the basis for 

formulating statistical decisions.  Two distinct stochastic decision making processes are illustrated in the present 

work. The first generates triggers for initiating traffic flow management decisions, and the second employs an 

optimal resource allocation approach to balance the traffic volume between multiple runways.  

The TFM triggering algorithm is demonstrated for the San Francisco terminal area, while the resource 

allocation algorithm is applied to runway load balancing in a specific runway configuration. Actual traffic data
19

 

from the San Francisco Metroplex comprising the SFO, OAK, and SJC airports is used to demonstrate the 

performance of these algorithms. As an example, Figure 1 shows the radar tracks of aircraft in the San Francisco 

(KSFO) terminal area on July 9, 2007. A few trajectories shown in red denote typical vectoring and holding 

maneuvers in the terminal area to meet arrival time constraints at the runway. The paths marked with bold straight 

line segments represent the typical waypoint sequence aircraft employ from the boundary of the terminal area to the 

runway. Note that only the arrival traffic in the West Plan is shown in Figure 1. 

The overall stochastic flow control 

concept is illustrated in Figure 2. The first 

step in the approach is the formulation of 

the queuing network model of the 

airspace. As motivated earlier, queuing 

network captures the essential features of 

traffic flow using a very small number of 

parameters. These networks can be used to 

rapidly compute traffic flow metrics for 

basing the TFM decisions. Formulation of 

a queuing network of the San Francisco 

terminal area will be discussed in Section 

II. An estimator is next formulated based 

on the queuing network model. The 

estimator formulation follows the 

Bayesian approach
20

 of using 

measurements to update prior statistical 

distribution of queuing network 

parameters. Since the probability 

distributions employed in queuing 

networks are non-Gaussian, traditional 

estimation techniques such as Kalman Filters
21

 cannot be used. However, rapid evolution of computer technology 

has made it possible to consider more advanced estimation schemes such as the Particle Filtering technique
22,23

 for 

this non-Gaussian estimation problem. The Particle Filtering algorithm used in the present research will be presented 

in Section III.  

 

Figure 2. Derivation of Traffic Flow Management Decisions from Stochastic Traffic Data 
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Figure 1. Sample Radar Tracks for the West Plan Traffic Arrivals 
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The estimated queuing parameters can be used to compute the traffic flow metrics to form the basis for air 

traffic flow management decisions. Common metrics include traffic density in regions of the airspace, flight time 

between waypoints and traffic flows at specific fixes. The estimation algorithm will enable the computation of 

statistical distribution of these metrics for use in decision making. Type of decisions to be made in TFM may 

include the generation of triggers for initiating iterative numerical algorithms, or specific flow control actions such 

as miles/time-in-trail, holding and vectoring, re-routing and flow balancing.  Since the data available is in the form 

of distributions, these decisions must be formulated using methods from Statistical Decision Theory. Parts IV and V 

will discuss two different applications of the theory. The first involves the generation of TFM triggers in the San 

Francisco terminal area based on Hypothesis Testing, and the second involves runway load balancing based on mean 

traffic flow.  

The methodology for traffic flow management advanced in this paper explicitly recognizes the stochasticity of 

the air traffic flow. Consequently, decisions emerging from this methodology are likely to be directly applicable in 

real situations. Due to its general structure, the stochastic decision making methodology developed in this paper is 

applicable in a wide variety of traffic management problems. VI will discuss the conclusions from the present 

research, and will present a few productive avenues for future work. 

II. Modeling Traffic Flow in the Terminal Area 

As indicated in the previous section, the estimation and decision techniques developed in this research focused 

on traffic flow control in the San Francisco terminal area.  The traffic flows in the San Francisco metroplex 

according to the West Plan are shown in Figure 3 (left). This metroplex includes San Francisco International Airport 

(SFO), Oakland International Airport (OAK), and Mineta San José International Airport (SJC). The traffic flows 

into the area under the South East Plan is illustrated in Figure 3 (right).  

 

  

Figure 3. Major Jet Routes in the San Francisco Area Metroplex: West Plan (Left) and 

South-East Plan (Right); Figures Adapted from Ref. 24, Background Maps © 2011 Google Inc. 

In the interest of brevity, the development will be restricted to arrivals into the San Francisco metroplex under 

the West Plan. In the present work, it is assumed that the San Francisco metroplex is composed of 4 runways and 10 

arrival fixes. The 4 runways are: KSFO28L, KSFO28R, KOAK29, and KSJC30.  Although KSFO also includes 

runways KSFO01L and KSFO01R, these are used primarily for departing flights under the West Plan. 

Consequently, these two runways are not included in the present model. Additionally, since the volume of air traffic 

arriving at KSFO is considerably larger than KOAK or KSJC, the latter two airports are considered to be composed 

on single runways.  Traffic flows under the South East Plan, departure traffic flow, and traffic in and out of the other 

airports in the metroplex were not analyzed in this research. 

A. Modeling the Metroplex as a Network of Arrival Fixes 

The trajectories of flights arriving into the metroplex can be modeled as a series of routes between arrival fixes 

and runways at the airport. The layout of a simplified set of arrival routes for the San Francisco region considered in 

the present study is given in Figure 4. 
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The arrival fixes used in the present work are: BORED, BONNS, GROAN, LICKE, PIRAT, PYE, SKUNK, 

SYNTH01, SYNTH02, and SYNTH03. It can be observed from Figure 4 that all the chosen fixes lie in a circle of 

radius approximately 40 nautical miles, with center at KOAK. This is because the radar measurements for flights 

landing and taking off from the metroplex are only available within this area. The arrival fixes SYNTH01-03 are 

phantom fixes that are not used in operational procedure, but are used to represent aircraft trajectories from STIKM, 

SAC, and MODVD, respectively. PIRAT is used to represent flights landing in the metroplex from the Pacific. The 

other arrival fixes also include waypoints for arrival paths whose arrival fixes lie outside the 40nmi radius. For 

example, LICKE is a merge point of aircraft trajectories from PAPEE and SNS, and SKUNK represents aircraft 

trajectories from ANJEE.  

Each arrival-fix and runway pair constitutes 

an arrival route. Even though there are 40 

possible combinations of fixes and runways, all 

fixes do not lead to all runways. With reference 

to Figure 4, it may be observed that PYE and 

LICKE are arrival fixes for flights landing at 

KSJC30, and SYNTH01/03 and BORED are 

fixes for KOAK. The remainders of the fixes are 

for flights landing at KSFO. Note that some of 

the fixes are shared by flights on approach to 

different airports. For example, a small fraction 

of Pacific flights routed through PIRAT also land 

at KSJC. Flights from SYNTH03 land at both 

KOAK as well as KSFO. The radar 

measurements indicate that there are typically 18 

active fix-runway combinations. The exact 

number may change from one day to next, 

depending on the flight schedules. 

 

B. Abstraction of Arrival Routes as a Queuing Network System 

The queuing abstraction
10,11

 of an air-route models the aggregate behavior traffic using two parameters, 

namely, the Inter-Arrival Time distribution into the arrival fix and a Service Time distribution through the route. 

Since the service time is not deterministic, the model denotes delayed traffic as a queue of aircraft waiting to 

complete their flight through the route.  Figure 5 illustrates a typical queuing model. The red circle represents the 

service time or the time of flight through the route, given by a statistical distribution. For instance, individual aircraft 

take a certain amount of time to transit between waypoints. A certain amount of variability will exist due to ambient 

winds and aircraft type. The second component of the queue depends upon the arrivals into the queuing node. 

Depending on the traffic existing between the waypoints of interest, the aircraft entering the route segment may have 

to extend its flight time to follow the aircraft already en route. This additional flight time can be interpreted as the 

Wait Time spent in a queue, represented by a blue-red accordion in Figure 5. Since the wait time cannot be explicitly 

separated out, it is more convenient to conceptualize the total time spent in a route as the System Time. Note that the 

system time can directly be measured along each route by subtracting the time of entry of each aircraft into the route 

from the time of exit from the route segment. Discussions in Section III will demonstrate how estimation can be 

used to construct the system time distribution from prior knowledge about the route and actual measurements.  

Admittedly, as with the Eulerian model of traffic flow, a certain amount of fidelity in traffic representation is 

lost due to the fact that the queuing abstraction condenses the aggregate behavior of the aircraft in the airspace 

through service time and wait time in the queue.  The chief justification for their continued use in applications stems 

from the fact that they enable extremely rapid stochastic analysis of traffic flows using simple algebraic 

relationships.  

 

 
Figure 4. Arrival Fixes in the San Francisco Metroplex 
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Figure 5. Queuing System with an Arrival Process, Queue and a  Service Process 

The traffic flow in the NAS will generally 

involve multiple route segments that merge and 

diverge. The traffic along these routes can be 

represented using a queuing network composed 

of several queues. If the network contains 

diverging nodes, additional parameters called 

Flow Fraction
10

 will also have to be defined. As 

an example, Figure 6 shows the queuing network 

abstraction of the traffic arriving into the San 

Francisco airport. It may be noted that this 

network consists only of merging nodes.  The 

estimation methodology described in Section III 

enables the computation of the queuing network 

by combining historic data, with current 

measurements, in a predictor-corrector type 

algorithm.  

 

 

 

 

 

III. Particle Filter for Estimating Air Traffic Flow Queuing Network Parameters 

The statistical distribution of queuing network parameters for traffic flow discussed in Section II can be 

determined from historic traffic data. However, since the traffic data is available continuously, an approach must be 

found to update the parameter distributions derived from historic data to detect changes. This can be carried out 

using the Bayesian approach
20,21

. This parameter estimation approach uses the Bayes theorem to update  prior 

statistical distributions using evidence in the form of measurements to get posterior or updated distributions. A well-

known implementation of this approach is the Kalman Filter
21

, and related estimation techniques. The Kalman 

Filtering approach is a specialization of the Bayes estimation technique to linear dynamic systems with Gaussian 

noise components to derive recursive algebraic relationships for deriving posterior distributions from prior 

distributions and measurements. Due to its elegance and computational efficiency, the Kalman Filtering technique 

has found applications in extremely diverse set of problems.  

Unfortunately, the Kalman Filter approach cannot be employed in estimating the parameters of the queuing 

network because of two reasons. Firstly, the inter-arrival time distributions, service time distributions and the flow 

fractions are all constrained to be greater than zero. Secondly, these distributions are described by Poisson, Erlang or 

Coxian distributions
10,11

. These facts require the consideration of more advanced techniques such as Particle 

Filtering algorithms
20,22,23

. An overview of the Particle Filter and its application to the estimation of queuing network 

parameters will be discussed in this section. 

Model describing the parameters of the queuing network can be represented as: 

 
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝜈𝑘  

𝑧𝑘 =  𝑥𝑘 , 𝜇𝑘  
(1) 

Arrival Process Service Process

Queue

 

Figure 6. Queuing Network Approximation of the San 

Francisco Terminal Area Traffic 
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In the above equation, 𝑥𝑘  is the state of the model at the 𝑘th instant, 𝑧𝑘  is the measurement, 𝜈𝑘  is the process 

uncertainty in the nonlinear transformation 𝑓: ℝ → ℝ, and 𝜇𝑘  is the measurement uncertainty for the measurement 

model : ℝ → ℝ. To avoid complicated subscripts, it is assumed that the nonlinear system and the measurement 

models are scalar. However, the analysis presented in this section holds for multi-dimensional systems as well. 

In the present work, Eq. (1) describes the evolution of the System Time estimate at a given arrival fix-runway 

route, with measurements available from radar measurements. In the absence of any process uncertainty, the 

estimate of the System Time will remain unchanged, and  𝑥 𝑘+1 = 𝑥 𝑘 , where the   ⋅   superscript denotes the estimated 

value of the quantity. However, in general, uncertainty in the process arises due System Time variation caused by 

factors such as the aircraft fleet mix, prevailing wind pattern, weight variations, piloting technique, among others.  

In the absence of measurement uncertainty, 𝑧 𝑘 = 𝑥 𝑘 , where the   ⋅   superscript denotes the measured value of the 

quantity. However, measurement uncertainty will be present due various factors affecting radar estimation of aircraft 

positions. 

The particle filter is used to represent the distribution of the state at the 𝑘th step, by a set of particles Χ = {𝑥 𝑘
𝑖 }, 

𝑖 = 1, … , 𝑁, where 𝑁 is the number of particles. As a general rule, a larger number of particles will result in a more 

accurate representation of the probability density function (PDF) of 𝑥 𝑘 . To complete the description of the PDF, it is 

also necessary to use a set of importance weights Ω =  𝑤𝑘
𝑖  , 𝑖 = 1, … , 𝑁. At the 𝑘th step, the weight 𝑤𝑘

𝑖  denotes the 

relative weight of the particle 𝑥 𝑘
𝑖  in the representation of the PDF. Consequently, the posterior distribution 

𝑝 𝑥𝑘  𝑧0 , 𝑧1, … , 𝑧𝑘  is approximated by the 𝑁-tuple set 𝑃 =   𝑥 𝑘
1 , 𝑤𝑘

1 ,  𝑥 𝑘
2, 𝑤𝑘

2 , … ,  𝑥 𝑘
𝑁 , 𝑤𝑘

𝑁  . An approximation for 

the expected value of a function 𝑔(𝑥𝑘) is then given by: 

  𝑔 𝑥𝑘 𝑝 𝑥𝑘  𝑧0, 𝑧1 , … , 𝑧𝑘 𝑑𝑥𝑘 ≈  𝑤𝑘
𝑖 𝑔 𝑥 𝑘

𝑖  

𝑁

𝑖=1

 (2) 

A. Process and Measurement Uncertainty Models 

The process noise model can be given in terms of a known PDF. For instance, if the noise component were 

Gaussian, the distribution can be specified in terms of mean and variance. In the most general case the process and 

measurement noise uncertainties can be given by histograms or discrete PDFs derived from historic or experimental 

data. If the process uncertainty is given by a discrete PDF, Eq. (1) can be rewritten as: 

 𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑝𝑘1
, 𝑝𝑘2

, … , 𝑝𝑘𝑛
  (3) 

where  𝑝𝑘1
, … , 𝑝𝑘𝑛

  denote the histogram heights proportional to frequency, over time interval sets 𝑇𝑖 =  𝑡0, 𝑡𝑖 , 

with 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑖 < ⋯ < 𝑡𝑛 . The subscript 𝑘 is used to denote their value at the 𝑘th step. Note that 𝑇𝑖  are 

considered constant. The PDF for the measurement uncertainty can also be obtained in a similar manner: 

 𝑧𝑘 =  𝑥𝑘 , 𝑞𝑘1
, 𝑞𝑘2

, … , 𝑞𝑘𝑚
  (4) 

where the histogram depicting the measurement noise characteristics are defined by 𝑚 bins of height 

𝑞𝑘1
 𝑥𝑘 , 𝑞𝑘2

 𝑥𝑘 , …𝑞𝑘𝑚
(𝑥𝑘), over time segments 𝑇𝑖

′  that can be assumed to be constant. 

In order to expedite the random number generation required for Particle Filter, this work uses the Gamma () 

distribution to model the process and measurement uncertainty. The  distribution has a support [0, ∞) and is 

defined using two parameters 𝑘 and 𝜃, as follows: 

 𝑝 𝑡 =
1

Γ 𝑘 

𝑡𝑘−1

𝜃𝑘
exp  −

𝑡

𝜃
  (5) 

The two parameters can be obtained in terms of the mean 𝑚 and variance 𝑣 of the distribution, by using the relations 

𝑘𝜃 = 𝑚, and 𝑘𝜃2 = 𝑣. The  distribution is used for the following reasons: 

  For integer values of 𝑘, the  distribution is a 𝑘-stage Erlang distribution with rate parameter 𝜃. 

Physically, this means that a flight that arrives at a fix will go through 𝑘 phases, each phase will require an 

amount of time whose value is sampled from an Exponential distribution with mean flow rate 1/𝜃. This 

type of distribution is commonly used in formulating queuing networks. 
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  The domain for the  distribution is defined as [0, ∞), the random numbers generated by this distribution 

is guaranteed to be greater than or equal to zero.  

  The generation of random variables from a  variate is easier when compared to the generation using a 

histogram. The present research used the GNU Scientific Library
25

 routine GSL_RAN_GAMMA
26

 for this 

purpose. 

B. The Particle Filter Algorithm 

In this paper, the Particle Filtering algorithm is used for the estimation of the System Times along the multiple 

arrival routes into San Francisco. The  steps in the algorithm update this distribution based on a measurement and 

process model. The steps are as follows: 

1.  Initialize the distribution of the queuing network parameters using historic data and predicted traffic 

demand. 

2. Generate predictions of the measurements corresponding to the queuing network parameters. 

Measurement noise and any nonlinear relationship between the queuing network parameters and actual 

measurements can be included in this step. 

3. Update Importance Weights from predictions of measurements and the corresponding queuing network 

parameters. Importance Weights denote the relative contribution of each particle to the overall 

statistical distribution.   

4. Calculate stochastic distribution of the parameters from the Importance Weights. 

5. Carryout Importance Resampling. This step refocuses the set of samples to the regions in the state 

space with high posterior probability
20,22,23

.  

6. Use the stochastic distribution of parameters obtained in Step 4 to predict the parameter distributions in 

the next time step. This prediction can incorporate the knowledge of uncertainties in the queuing 

network modeling of traffic flows. 

7. Go to Step 2, repeat until the estimation process is complete or all measurements have been made. 

In the interests of brevity, only a brief description of the Particle Filter in the context of the current application, 

is presented. Reference 20 provides a thorough discussion of the algorithm. The block diagram given in Figure 7 

illustrates the methodology for System Time estimation.  

 

 

Figure 7. Particle Filter for Estimating System Time along an Arrival Route 

It is assumed that 𝑁 particles are used represent the System Time distribution in the Particle Filter. These 

particles are denoted by  𝑥 𝑘
𝑖 , 𝑖 = 1, … , 𝑁. It should be noted that 𝑘 = 0 when initialized. The particles can be 

initialized by sampling 𝑥 𝑘
𝑖  from either a Uniform distribution, or from the histogram described by  𝑝01

, 𝑝02
, ⋯ , 𝑝0𝑛

  

defined in Eq. (3).  

Next, the observations corresponding to the particles are generated using the measurement model 𝑧𝑘 = (𝑥𝑘). 

Since the measurement is the state System Time, 

Generate particles xi

i = 1…N (e.g. uniform 
distribution)

Calculate weights of 
the particles  wi

based on 
measurement model

Mean m =  wixi

Variance v =  wi(xi-m)2

Histogram, etc.

Resample particles if 
necessary (i.e. if 

particles diverge and 
relative weights of 
many particles are 

very low)

Add process noise

xk+1 = f(xk, k)
When k = 0, 

xk+1 = xk

Observation with 
Measurement Error

Arrival Fix Runway
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 𝑧 𝑘
𝑖 = 𝑥 𝑘

𝑖 , 𝑖 = 1, … , 𝑁 (6) 

The importance weight 𝑤𝑘
𝑖  denotes the relative contribution of the 𝑖th particle to the histogram of the state at 

the 𝑘th step. All the stochastic properties of the state 𝑥𝑘  are given by a combination of the particles and their 

weights. Once the measurement 𝑧 𝑘  is available at the current time, the weight 𝑤𝑘
𝑖  for the 𝑖𝑡  particle can be 

calculated as  

  𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖  𝑝 𝑧 𝑘  𝑥 𝑘
𝑖  , 𝑖 = 1, … , 𝑁 (7) 

Equation (7) shows that the 𝑖th particle weight is the probability that the particle generates the observed 

measurement, weighted with its value at the previous step. Without loss of generality, one may use 𝑤0
𝑖 = 1, 

𝑖 = 1, … , 𝑁. In this work, it is assumed that the observation model is given by a  distribution. Consequently, the 

observation PDF can be constructed using the particle 𝑥 𝑘
𝑖  as the mean, and with a standard deviation 𝜎𝑅 , that is 

assumed known from prior experiments. For example, the accuracy of radar measurements is known a priori. In this 

case, using Eq. (5) with Eq. (7) results in the following expression for the importance weights: 

 

𝑤𝑘
𝑖 =

𝑤𝑘−1
𝑖

Γ 𝑎 

 𝑧 𝑘 
𝑎−1

𝑏𝑎
exp  −

𝑧 𝑘
𝑏
 + 𝜖, 𝑖 = 1, … , 𝑁 

𝑏 =
𝜎𝑅

2

𝑥 𝑘
𝑖

, 𝑎 =
𝑥 𝑘

𝑖

𝑏
 

(8) 

In the above equation, a small number 𝜖 (10
-8

) is added to the importance weight to prevent it from going to 

zero due to rounding errors during the evaluation of the  distribution PDF through the exponentiation operation and 

calculation of the gamma functions. Finally, due to rounding and floating point errors, the weights are also 

normalized with respect to their sum, to ensure that they add to unity. 

Given the particles and their weights, a PDF of the state estimate 𝑥 𝑘  can be constructed
20

. In particular, the 

mean and the variance of the state estimate at the 𝑘th step are given by: 

 

𝐸 𝑥 𝑘  =  𝑤𝑘
𝑖 𝑥 𝑘

𝑖

𝑁

𝑖=1

 

𝑉 𝑥 𝑘  =  𝑤𝑘
𝑖  𝑥 𝑘

𝑖 − 𝐸 𝑥 𝑘   
2

𝑁

𝑖=1

 

(9) 

Finally, the system is propagated using the dynamical system equations in Eq. (3). Each particle 𝑥 𝑘
𝑖  is 

propagated forward using the transformation without the uncertainty model, yielding the state 𝑥 𝑘+1
𝑖− . In the present 

work, the System Time does not change after an iteration if there is no process uncertainty, i.e., 𝑥 𝑘+1
𝑖−1 = 𝑥 𝑘

𝑖 , 𝑖 =
1, … , 𝑁. Therefore, the propagated particle can be obtained by sampling from a discrete PDF using the particle at the 

𝑘th step: 

 𝑥 𝑘+1
𝑖 ~𝐻𝑖𝑠𝑡  𝑝𝑘1

 𝑥 𝑘
𝑖  , 𝑝𝑘2

 𝑥 𝑘
𝑖  , … , 𝑝𝑘𝑛

 𝑥 𝑘
𝑖   , 𝑖 = 1, … , 𝑁 (10) 

In this work, it is assumed that the process uncertainty is  distributed, i.e. the System Time distribution can be 

represented by a  distribution. Equation (10) can be used to simplify the forward update equation as: 

 

𝑥 𝑘+1
𝑖 ~Γ 𝑎, 𝑏   𝑖 = 1, … , 𝑁 

𝑏 =
𝜎𝑄

2

𝑥 𝑘
𝑖

, 𝑎 =
𝑥 𝑘

𝑖

𝑏
 

(11) 

where 𝜎𝑄  is the standard deviation of the process uncertainty, determined from traffic data for a normal day with 

minimal air traffic delays. 
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With particles propagated as described in the foregoing, the particle filtering procedure is repeated by iterating 

through the above step until all measurements are accounted for. Under the assumption that both process and 

measurement uncertainties are distributed according to the  distribution, the quantities 𝜎𝑅  in Eq. (8) and 𝜎𝑄  in Eq. 

(11) can be considered as the tuning parameters governing the performance of the filter.  

C. Estimation of KSFO Traffic Parameters using the Particle Filter 

In this section, the Particle Filter algorithm will be used to estimate System Time distributions from radar 

measurements. The schematic diagram in Figure 7 explains this process. The measurement is the System Time of an 

aircraft corresponding to the time an aircraft spends along an arrival route. This is obtained from radar 

measurements that records the time at which a given aircraft is closest to an arrival fix, and the time at which the 

aircraft lands on one of the runways.  

Data for two different days are chosen to illustrate the ability of the estimation scheme to adapt to varying 

traffic conditions. The first day, July 9, 2007, was a normal day in which air traffic arrivals into San Francisco 

experienced no constraints or delays as shown in a reproduction of the ASPM data
27

 in Figure 8. However, the 

ASPM data shows that on July 16, 2007, San Francisco experienced a significant drop in capacity during the day.  

This data is given in Figure 9.  

Figure 8 and Figure 9 correspond to Monday, and as such, it is expected that the traffic pattern on both days 

would closely resemble each other. It may observed from the fight-most column in Figure 8 that there was no impact 

from weather. A normal variation in total runway capacity can be observed in the 9
th

 column at 10am, followed by a 

dip in capacity at 10pm. The capacity in this column is represented by the number of runway operations per hour, 

and is composed of aircraft that are either taking off / departing from the airport, and landing / arriving at the airport. 

 

Figure 8. ASPM Data for Runway Operations at KSFO, July 9 2007 

On the other hand, the Data for July 16, given in Figure 9 shows that runway capacity only increased after 12 

pm, and decreased after 7 pm. Moreover, the 19
th

 column reveals that the cause for this decrease was fog in the 

vicinity of the airport as denoted by the notation VCFG. Consequently, it may be expected that the System Time 

estimates from radar track data on these two days will also exhibit these variations.  

The figures given in the following illustrate System Time estimates for arrival into KOAK29, KSJC30, and 

KSFO28L/KSFO28R. The ASPM data reveals that the decrease in airport capacity was not evident at KOAK and 

KSJC. However, arrival routes to these airports may still exhibit a deviation in System Time from their calculated 

nominal values given in Table 1. Although the System Time can be calculated for any route, results are presented 

only for arrival routes that have a significant number of flights given in Figure 10 through Figure 19. 
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Figure 9. ASPM Data for Runway Operations at KSFO, July 16, 2007 

 

Table 1. Mean Nominal System Time (July 9, 2007) 

 
Figure 10 through Figure 14 present System Time estimates as a function of time, for flights from the arrival 

fixes BORED, SYNTH01 and SYNTH03 to KOAK29. The blue line with circular markers in all of these figures 

depicts the nominal data for July 9, 2007, and the red line with the diamond-shaped markers depicts data for July 16, 

2007 corresponding to a flow constrained situation. The marker positions depict the time of the day where a new 

measurement was made available to the Particle Filter, i.e., the System Time for a new flight was recorded and 

calculated from radar measurements. The mean System Time from July 9 data for these links was calculated to be 

12.0 min, 15.0 min, and 10.8 min, respectively. Data from July 16 shows some deviation in mean System Time, 

especially between 10am and 12pm, and after 6pm. The increase in System Time for flights in arrival routes to 

KOAK may be due to the same reason as those expected for flights to KSFO.  This aspect will be explored in greater 

detail when discussing the results for arrival routes to KSFO in the later figures. In general, when comparing the 

System Time estimates for July 16 with July 9, an increase of 6 min in the mean System Time was observed after 6 

pm. The capacity of OAK, as shown in Figure 15, was 138 runway operations per hour for the nominal day. On July 

16, the capacity went down to 110 after 7am. Note that very few flights arrived at OAK prior to 7am. Therefore, for 

the rest of the day, a lower capacity was observed at OAK on July 16, 2007. 
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Figure 10. Evolution of System Time Estimate for 

BORED-KOAK29 Arrival Route 

 
Figure 11. Evolution of System Time Estimate for 

SYNTH01-KOAK29 Arrival Route 

 

 
Figure 12. Evolution of System Time Estimate for 

BORED-KOAK29 Arrival Route 

 
Figure 13. Evolution of System Time Estimate for 

SYNTH01-KOAK29 Arrival Route 

 

 

 

Figure 14. Evolution of System Time Estimate for SYNTH03-KOAK29 Arrival Route 
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Figure 15. ASPM Data for Runway Operations at KOAK and KSJC 

Figure 16 shows the evolution of estimated System Time for the arrival route from LICKE to KSJC30. It may 

be observed that in general, the mean System Time obtained from data for both days are very close to each other. 

The nominal System Time on July 9 shows an increase between 6am and 9am. According to the ASPM report for 

KSJC, shown in Figure 15, airport capacity went down briefly from 65 to 60 runway operations per hour on July 9 

in this time segment, although no weather impact was recorded. At all other times, including all of July 16, airport 

capacity remained at 65 runway operations per hour. 

The evolution of System Time estimates for 

runways KSFO28L and KSFO28R are shown in 

Figure 17 through Figure 20. It should be observed 

that the decrease in airport capacity that was noted 

in Figure 9 does not necessarily affect System Time 

in all arrival routes. For example, as shown in 

Figure 17, PYE-KSFO28L does not appear to show 

any deviation in System Time. However, a 

significant deviation in System Time in any one 

arrival route may be sufficient to initiate TFM into 

the terminal area, since the effect will be more 

pronounced downstream where arriving streams of 

aircraft combine into one landing stream. It should 

be noted that even though Figure 18 shows that the 

arrival route SKUNK-KSFO28L shows no 

significant deviation in System Time, this may be 

misleading because on July 16, data shows that no 

flights from SKUNK landed on KSFO28L after 

7pm, and instead, landed on KSFO28R given in 

Figure 19. Flights from SKUNK to KSFO28R, do exhibit an increase in System Time after 7pm, as shown in Figure 

19. 

Perhaps the most significant deviation in System Time is seen flights arriving from the fix GROAN, shown in 

Figure 20. It should be noted that an increase in System Time is observed between 8am and 10am even for the 

nominal data from radar measurements on July 9. However, as shown by the estimated System Time on July 16, the 

 
Figure 16. Evolution of System Time Estimate for 

LICKE-KSJC30 Arrival Route 
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System Time continues to increase in this time interval, indicating variation in System Time. An increase in System 

Time is also seen after 7pm, for arrival routes to KSFO. 

When compared with the ASPM data for KSFO, shown in Figure 8 and Figure 9, the increase in System Time 

between 9am and 12pm, and then again from 7pm to 10pm, are clearly reflected in the drop in airport capacity in 

these time periods. 

 

Figure 17. Evolution of System Time Estimate for 

PYE-KSFO28L Arrival Route 

 

Figure 18. Evolution of System Time Estimate for 

SKUNK-KSFO28L Arrival Route 

 

 
Figure 19. Evolution of System Time Estimate for 

SKUNK-KSFO28R Arrival Route 

 
Figure 20. Evolution of System Time Estimate for 

GROAN-KSFO28R Arrival Route 

The results presented so far indicate the Particle Filter estimation algorithm is able to the employ historic data 

and the current measurements to reveal the dynamic behavior of the System Time. The deviations observed from the 

System Time estimator have been corroborated with independently obtained ASPM data.  In particular, it has been 

shown that there is a strong link between the runway capacity of the airport being studied, and the System Time of 

arrival routes that lead to that airport. When the runway capacity decreases due to weather-related or other reasons in 

any time-segment, the System Time shows a corresponding increase in the same time segment. 

Although only mean values of the System Time have been presented in this section, the Particle Filter is able to 

calculate its complete statistical distribution in the form of histograms. This histogram can be used to create a trigger 

for initiating TFM in the terminal area, as will be discussed in Section IV. 

D. Computational Effort in the Particle Filter 

Before closing this section, a few discussions about the computational effort involved in the Particle Filter 

implementation are in order. In the current implementation, the Particle algorithm was programmed using GNU C 

with the GNU Scientific Library
25

 on a 2.8GHz 64bit dual-core processor. The execution time using 24-hour radar 
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data was less than 1 min, with 10000 particles per arrival route. As noted before, there are approximately 18 routes, 

with approximately 220 flights per route.  In the current implementation, the algorithm scales linearly with the 

number of arrival routes. This is because, each route is assumed to be an independent link from an arrival fix to a 

runway, and no merge or split of flows has been taken into account. Introduction of additional complexities in the 

network topology may increase the computing time. However, computer systems employing modern Graphical 

Processing Units can be used to accommodate this increase in complexity
28

.  

IV. Triggering TFM Initiatives based on Hypothesis Testing 

Section III demonstrated the estimation of queuing network parameters using a Particle Filter. It was shown 

there that the Particle Filtering algorithm can estimate increase in the System Time arising from traffic congestion. 

This observed increase can be used to trigger traffic flow management algorithms. However, since these are 

statistical distributions, Statistical Decision Theory
9
 must be employed to create actionable decisions. A method for 

triggering for Traffic Flow Management algorithms based on based on the Hypothesis Testing methodology
9
 will be 

described in this section.  

Hypothesis testing is used to establish the statistical significance of an event. The objective is to determine if 

the event occurred entirely due to chance or occurred due to a definite cause. In keeping with the formalism 

associated with Hypothesis Testing, it is necessary to define a Null Hypothesis 𝐻0, and an Alternative Hypothesis 

𝐻𝑎 . Typically, the purpose of the Null Hypothesis is to establish that no relationship exists between two measured 

phenomena. The Alternative Hypothesis can either be a negation of the Null Hypothesis, or it can be used to 

measure the likelihood of an alternative to 𝐻0 such as the second phenomena happened due the result of a different 

set of conditions. Once 𝐻0 and 𝐻𝑎  are suitably defined, a decision table as shown in Table 2 can be created. The 

response to 𝐻0 can either be an acceptance or rejection of the hypothesis, followed by certain actions based on 

acceptance or rejection. The entries of the 2×2 decision table are then populated by the consequences of accepting or 

rejecting the hypothesis when either of the hypotheses is true. 

 

Table 2. 2×2 Decision Table 

 

A. Hypothesis Testing Based on Statistical Decision Theory  

In Table 2, accepting 𝐻0 is equivalent to making a decision under the assumption that there is no relationship 

between two observed phenomena. Therefore, if 𝐻0 is true, then its acceptance does not lead to a decision error. On 

the other hand, rejecting 𝐻0 when it is true results in a decision error that is known as a Type I Decision Error. A 

converse analysis can be performed on the Alternative Hypothesis 𝐻𝑎 . It should be noted that if 𝐻𝑎  is defined as a 

negation of 𝐻0, then the following is true: 

 𝐻0  𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 ⟺ 𝐻𝑎  𝑖𝑠 𝑇𝑅𝑈𝐸 (12) 

However, in general, the implication can only be defined leftwards, because when 𝐻0 is false, an untested alternative 

hypothesis 𝐻 𝑎  may be true without 𝐻𝑎  being true. Therefore, if 𝐻𝑎  is true, then rejecting 𝐻0 and not making a 

decision based on 𝐻0 also does not lead to error, because 𝐻0 is false. However, accepting 𝐻0 when 𝐻𝑎  is true is a 

decision that may result in unintended consequences and will result in a Type II Error. In the following sections the 

Null and Alternative Hypotheses will be formulated in the context of Traffic Flow Management. 

B. Definition of the Null Hypothesis in the Context of TFM 

The Null Hypothesis and Alternative Hypothesis can be defined in order to frame the hypothesis testing 

methodology for triggering TFM: 

𝑯𝟎: There is no delay experienced in a flight’s trajectory in a given route, and the observed deviation in 

System Time can be attributed to normally occurring statistical variations. 

𝑯𝒂: There is delay experienced and the observed deviation in System Time is due to actual causes. 
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In the above definitions, a deviation in System Time is measured by comparing the estimated System Time 

distributions with the System distribution for a normal day. 

The acceptance of 𝐻0 implies that no TFM action need to be taken. The rejection of 𝐻0 implies that some TFM 

action is taken. In general, the decision to perform TFM depends on the confidence with which 𝐻0 is rejected. Based 

on these definitions, the 2×2 Decision Table given in Table 2 can be converted into a decision table more specific to 

TFM needs, as shown in Table 3. 

Table 3. Decision Table for TFM 

 
 

This paper develops a method for calculating the likelihood of rejecting 𝐻0. In other words, the likelihood that 

the deviation in System Time was not due to normally occurring statistical variations is evaluated. It should be noted 

that: 

  Since the data for flight trajectories and their respective System Times corresponds to historic radar 

measurements, TFM action is already implicitly included in the System Times. Therefore, basing a decision 

on this data allows one to measure the probability of the occurrence of a Type I Decision Error.  

  The probability of “No Decision Error” can be obtained from the complement of the probability of the 

Type I Decision Error. 

  The scope of the present work does not extend to calculating the probability of a Type II Decision Error. 

C. Comparison of System Time Distributions 

As noted in the previous section, the decision to perform TFM is based on the confidence with which the Null 

Hypothesis can be rejected. This is equivalent to examining the confidence with which one can reject the notion that 

the estimated System Time distributions and a nominal “good” day, at the same time, are similar to each other. 

Alternatively, one may study the distribution of the Delay Time, which is given by the difference between the 

System Time distribution currently observed, and the System Time distribution in the same time-interval on the 

nominal day.  

Since the Delay Time distribution is obtained by taking the difference of two independent distributions, the 

histogram of the Delay Time may be obtained by a convolution operation. Let the System Time distributions on the 

nominal day and current day be denoted by the discrete PDFs 𝑃1 𝑡 =   𝑝11 , 𝑇1 ,  𝑝12 , 𝑇2 , … ,  𝑝1𝑛 , 𝑇𝑛   and  

𝑃2 𝑡 =   𝑝21 , 𝑇1 ,  𝑝22 , 𝑇2 , … ,  𝑝2𝑛 , 𝑇𝑛   respectively, where it is assumed that the time intervals 𝑇𝑖 =  𝑡𝑖−1, 𝑡𝑖 , 

over which both PDFs are defined are identical. Let 𝜏1 and 𝜏2 be sampled from 𝑃1(𝑡) and 𝑃2(𝑡), respectively. The 

delay, defined by Δ, is given by Δ =  𝜏2 − 𝜏1. It follows that the distribution of Δ can be obtained by convolving the 

distribution of 𝜏2 and −𝜏1, where the distribution of −𝜏1 is given by 𝑃 1 𝑡 =   𝑝11 , 𝑇 1 ,  𝑝12 , 𝑇 2 , … ,  𝑝1𝑛 , 𝑇 𝑛  , 
where 

 𝑇 𝑖 =  −𝑡𝑛−𝑖−1, −𝑡𝑛−𝑖   (13) 

Consequently, the Delay Time distribution is given by the discrete PDF 

Δ 𝑡 =   Δ1 , 𝑇1
′ ,  Δ2, 𝑇2

′ , … ,  Δ𝑚 , 𝑇𝑚
′   , where 

 

𝑚 = 2𝑛 − 1 

Δ𝑖 =  𝑝1𝑗𝑝2 𝑖−𝑗 +1  

min  𝑖 ,𝑛 

𝑗 =𝑚𝑎𝑥  1,𝑖+1−𝑛 

, 𝑖 = 1, … , 𝑚 

𝑇𝑖
′ =  𝑡𝑖−1

′ , 𝑡𝑖
′   , 𝑡𝑖

′ = 𝑡0
′ +  𝑖 − 1 𝑑𝑡 ′ , 𝑖 = 1, … , 𝑚 

𝑡0
′ = 𝑡0 − 𝑡𝑛 , 𝑑𝑡 ′ =

 𝑡𝑛 − 𝑡0 

𝑛 − 1
 

(14) 

In particular, if the mean and the variance of the two System Time distributions are  𝑚1, 𝑣1 , and  𝑚2, 𝑣2 , 

respectively, then the mean and variance of the Delay Time distribution is given by: 
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𝑚𝐷𝑒𝑙𝑎𝑦 = 𝑚2 − 𝑚1 

𝑣𝐷𝑒𝑙𝑎𝑦 = 𝑣2 + 𝑣1 
(15) 

D. Assessing the Confidence in the Null Hypothesis by Evaluating a Test Statistic 

Since a Delay Time distribution can be calculated using the two System Time distributions, the confidence 

with which one may reject the Null Hypothesis can be obtained by studying the distribution Δ 𝑡 , obtained by using 

Eq. (14). However, while the full distribution is available for analysis using the particle filter approach, statistical 

analysis limits hypothesis testing to the use of the first two moments, namely, the mean and the variance. To this 

end, the test statistic 𝑧𝑜𝑏𝑠  is defined as follows: 

 
𝑧𝑜𝑏𝑠 =

𝑚𝐷𝑒𝑙𝑎𝑦

 
 𝑣𝐷𝑒𝑙𝑎𝑦

 𝑁
 

 
(16) 

where 𝑁 is the number of observations used to obtain the distribution.  

In the present problem, it is the number of flights in a given time interval over which the TFM trigger is 

studied. The term in the denominator of Eq. (16) is known as the standard error, and is a strong function of the 

number of samples. The test statistic 𝑧𝑜𝑏𝑠  can be interpreted as a random variable sampled from a distribution with 

zero-mean and unit-standard deviation. 

If the Null Hypothesis 𝐻0 is assumed true, then 𝑚𝐷𝑒𝑙𝑎𝑦 = 0, and the natural variation is governed by 𝑣𝐷𝑒𝑙𝑎𝑦 . 

The probability that a value 𝑧 ≥ 𝑧𝑜𝑏𝑠  occurred in this distribution is known as the p-value. A low p-value indicates a 

low probability for the occurrence of 𝑧 ≥ 𝑧𝑜𝑏𝑠  and the fact that a low probability event actually occurred is a 

sufficient condition for the rejection of the Null Hypothesis. 

Consequently, for a p-value of 𝛼, one can be 100𝛼per cent confident of accepting the Null Hypothesis, and 

conversely, one can be 100 1 − 𝛼  per cent confident of rejecting the Null Hypothesis. 

Under the assumption that the Delay Time distribution is Gaussian with unit standard deviation, the p-value 𝛼 

can be calculated from the CDF of the Gaussian distribution. It can be observed from Eq. (16) that the confidence 

with which 𝐻0 can be rejected is dependent on the number of samples used to define the histogram. Since 𝑧𝑜𝑏𝑠 ∝

 𝑁, as 𝑁 increases, the test statistic becomes larger for the same value of 𝑚𝐷𝑒𝑙𝑎𝑦 , and 𝛼 becomes exponentially 

smaller. Qualitatively, this implies that if a larger number of aircraft exhibit an increase in System Time from the 

nominal, one can place a greater confidence that TFM needs to be initiated. 

It should be noted that the use of the Gaussian distribution is only accurate when the number of flights is large. 

Since the number of aircraft flying the arrival routes over a decision period of one to two hours is small, it is more 

appropriate to use Student’s t-distribution. The t-distribution is a one-parameter distribution given by: 

 𝑝 𝑡 =
Γ  

𝜈 + 1
2

 

 𝜈𝜋Γ  
𝜈
2
 
 1 +

𝑡2

𝜈
 

−
𝜈+1

2

 (17) 

where the parameter 𝜈 is the number of degrees of freedom of the distribution, and is given by 𝜈 = 𝑁 − 1. As 𝜈 

increases, the t-distribution approaches the Gaussian distribution with zero mean and unit standard deviation. 

E. Results for Traffic Flow into San Francisco 

The hypothesis testing methodology is demonstrated using radar data in the SFO terminal area for July 16, 

2007. The nominal data is from radar measurements for July 9, 2007 and the Null Hypothesis is that an observed 

deviation in System Time at a given time on July 16 is due to naturally occurring variations in the System Time. 

Section III illustrated the estimation of System Time using the Particle Filter algorithm. Figure 10 through 

Figure 20 presented the mean values of the System Time for the two days considered in this research. In addition to 

the time histories of the means, the hypothesis testing methodology requires instantaneous variances of the 

estimates. As discussed in Section III, Particle Filter algorithm allows the calculation of these from instantaneous 

histograms of the estimates.  

The evolution of the histogram for arrival routes BORED-KOAK29, LICKE-KSJC30, and GROAN-

KSFO28R, are shown in Figure 21, Figure 22 and Figure 23, respectively. In these figures, the blue histogram is 

used to represent the discrete PDF of System Time from the nominal data obtained from radar measurements for 

July 9, 2007. The magenta histogram is used to represent the discrete PDF of System Time for the current day 
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observation, July 16, 2007. In all three figures, the discrete PDFs are calculated using bin sizes of 1-minute, and are 

superimposed on the mean value of the System Time estimated at that time step. 

The observed variations in mean System Time have already been discussed in Section II. In this section, the 

computation of the confidence with which the Null Hypothesis can be rejected for the three arrival routes will be 

presented. 

 
Figure 21. Evolution of System Time Probability Density Function, BORED-KOAK29 

 
Figure 22. Evolution of System Time Probability Density Function, LICKE-KSJC30 
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Figure 23. Evolution of System Time Probability Density Function, GROAN-KSFO28R 

Figure 24 shows the confidence with which one can reject the notion that deviation in System Time was due to 

natural statistical variation, for the BORED-KOAK29 arrival route. Figure 25 and Figure 26 show similar plots for 

the LICKE-KSJC30 arrival route and GROAN-KSFO28R arrival route, respectively. In all figures, the minimum 

confidence is 50%, because values lower than this implies a confidence greater than 50% that the Null Hypothesis is 

true. In some cases, the confidence cannot be calculated, because the number of aircraft arriving in a given time 

segment is too low, or zero. Furthermore, calculation of confidence when the nominal mean System Time is greater 

than the current mean System Time is also not performed, because Delay Time is only defined when the current 

System Time is greater than the nominal System Time. 

Figure 24 through Figure 26 should be 

compared with Figure 10, Figure 16, and Figure 

20, respectively. Comparison of these figures 

reveals with how much confidence one can say 

that an observed delay was large enough to 

require TFM. For example, only in one instance 

in the LICKE-KSJC30 route can one have 75% 

confidence that delay was not due to natural 

statistical variation.  For the rest of the day, the 

confidence of rejecting the Null Hypothesis is 

low. On the other hand, when comparing the 

current and nominal System Times for the 

BORED-KOAK29 arrival route with the 

confidence of rejecting 𝐻0, one can conclude 

with a confidence of greater than 75% that TFM 

was required after 6 pm. 

The confidence plot for the GROAN-

KSFO28R, shown in Figure 23 shows two 

segments where the confidence of rejecting 𝐻0 is nearly 100%: between 10 am and 12 pm, and again, after 7 pm. 

Whenever the System Time variation is observed, it can be observed that System Time for both the nominal data 

and current data increase after 9 am, however, it is only after 10 am that the currently observed System Time is 

greater than the nominal System Time. Therefore the increase in System Time may be attributed to statistical 

variations due to other phenomena. 

 

Figure 24. Confidence that Delay is not due to Natural 

System Time Variation, BORED-KOAK29 
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Figure 25. Confidence that Delay is not due to 

Natural System Time Variation, LICKE-KSJC30 

 

Figure 26. Confidence that Delay is not due to 

Natural System Time Variation, GROAN-KSFO28R 

The statistical hypothesis testing methodology for triggering TFM algorithms developed in this section of the 

paper can be used in a variety of statistical decision making situations that commonly arise while dealing with real 

air traffic data. In the present example, the hypothesis testing based on Particle Filter estimated System Time clearly 

indicated the need for initiating TFM along two arrival routes into San Francisco. This methodology can be used to 

construct decision support tools to aid traffic managers arrive at TFM decisions in a more logical manner. Section V 

will demonstrate the use of the queuing network parameters estimated by the Particle Filter for optimizing stochastic 

traffic flows. 

V. Runway Load Balancing 

The queuing network parameters estimated by the Particle Filter can be used address a variety of resource 

allocation problems that arise in air traffic flow control.  Specifically, the estimated parameters can be used to 

formulate a variety of runway management problems. The formulation described in the prior sections can be used to 

examine a large class of problems that can arise in NASA's SORM program.  

The runway load balancing problem can be defined as follows. Given 𝑛 arrival fixes to 𝑚 runways, the 

objective is to split the arrival flows at each fix, between the runways such that 𝑚 flows of aircraft landing on the 

runways are in a desired ratio to each other. The analysis is applicable to time-varying flows, and also accounts for 

the fact that changes in the flow rate at the arrival fixes are felt at the runway only after a period of time. The 

formulation is stochastic in the sense that the split fractions are mean values.  

A. Analytical Development 

A schematic diagram of the 28L/28R runway load distribution problem at San Francisco is given in Figure 27. 

The flow rate of aircraft at the 𝑛 arrival fixes are denoted by 𝜆𝐴𝑖
, 𝑖 = 1, … , 𝑛. The flow rate of aircraft at the 𝑚 

runways are denoted by 𝜆𝐷𝑖
, 𝑖 = 1, … , 𝑚.  

San Francisco airport has 4 runways: KSFO01L, KSFO001R, KSFO28L, and KSFO28R, of which runways 

01L and 01R are used mostly for departing flights. Runways 28L and 28R are used primarily for flights arriving into 

KSFO, although some departing flights also use these runways. The present research will be focused on runways 

28L and 28R.   

Five arrival fixes feed the traffic into the two runways: BONNS, GROAN, PIRAT, PYE, and SKUNK. For the 

purpose of present analysis, departing traffic from the terminal can be treated as an arrival fix; consequently, 𝑛 = 6. 

The objective of the runway load balancing process is to direct traffic into the two runways from each of the arrival 

fixes and the departing traffic stream, so as to load the two runways at a certain flow rate. This process must 

explicitly recognize the fact the aircraft streams from different arrival fixes take different amounts of time to reach 

the runways. Moreover, these System Times are stochastic variables. 
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Figure 27. Schematic Diagram of the Distribution of Traffic Load between Runways at KSFO 

Let 𝑇𝑖𝑗  be the time taken for a flight from the 𝑖th arrival fix to the 𝑗th runway. Note that these are the stochastic 

variables estimated by the Particle Filter described in Section III.  If it is assumed that the runways are close to each 

other, then it can be assumed that 𝑇𝑖𝑗 = 𝑇𝑖  ∀𝑗. Furthermore, let 𝑝𝑖𝑗  be the fraction of the flow of arriving aircraft at 

the 𝑖th arrival fix that is directed towards the 𝑗th runway. The flow fractions 𝑝𝑖𝑗  are the decision variables in the 

current analysis, in the sense that their values at a given time 𝑡 specify the fraction of traffic flow that are directed to 

each of the runways.  

By virtue of the fact that  𝑝𝑖𝑗
𝑚
𝑗=1 = 1, it can be assumed that  

 𝑝𝑖𝑚 = 1 −  𝑝𝑖𝑗

𝑚−1

𝑗 =1

 (18) 

In the current work, using the formulation developed in this section, the flow rate of aircraft landing at runways 

28L and 28R are given by the following two equations: 

 
𝜆𝐷1

 𝑡 = 𝑝1 𝑡 − 𝑇1 ⋅ 𝜆𝐴1
 𝑡 − 𝑇1 + ⋯ + 𝑝6 𝑡 − 𝑇6 ⋅ 𝜆𝐴6

 𝑡 − 𝑇6  

𝜆𝐷2
 𝑡 =  1 − 𝑝1 𝑡 − 𝑇1  ⋅ 𝜆𝐴1

 𝑡 − 𝑇1 + ⋯ +  1 − 𝑝6 𝑡 − 𝑇6  ⋅ 𝜆𝐴6
 𝑡 − 𝑇6  

(19) 

The total flow rate at the runways is given by 𝜆𝐷 𝑡 = 𝜆𝐷1
 𝑡 + 𝜆𝐷2

 𝑡 . From Eq. (19), it can be shown that: 

 𝜆𝐷 𝑡 = 𝜆𝐴1
 𝑡 − 𝑇1 + ⋯ + 𝜆𝐴6

 𝑡 − 𝑇6  (20) 

Let 𝑝𝑟𝑤𝑦  𝑡  be the desired fraction of the total flow landing on runway 28L, a time-varying quantity. Then the 

desired flow rates at the runways are given by 𝜆𝐷𝑒𝑠1
 𝑡  and 𝜆𝐷𝑒𝑠 2

 𝑡 , respectively, where 

 
𝜆𝐷𝑒𝑠1

 𝑡 = 𝑝𝑟𝑤𝑦  𝑡 𝜆𝐷 𝑡  

𝜆𝐷𝑒𝑠2
 𝑡 =  1 − 𝑝𝑟𝑤𝑦  𝑡  𝜆𝐷 𝑡  

(21) 

To further simplify analysis, Eq. (19) can be studied at discrete time steps, where 𝑡 = 𝑘 ⋅ Δ𝑡, and 𝑇𝑖 = 𝑠𝑖Δ𝑡. 

Then the time argument in Eq. (19) and Eq. (21) can be identified by the time step 𝑘, and these equations may be 

rewritten as follows: 

 
𝜆𝐷1

 𝑘 = 𝑝1 𝑘 − 𝑠1 ⋅ 𝜆𝐴1
 𝑘 − 𝑠1 + ⋯ + 𝑝6 𝑘 − 𝑠6 ⋅ 𝜆𝐴6

 𝑘 − 𝑠6  

𝜆𝐷2
 𝑘 =  1 − 𝑝1 𝑘 − 𝑠1  ⋅ 𝜆𝐴1

 𝑘 − 𝑠1 + ⋯ +  1 − 𝑝6 𝑘 − 𝑠6  ⋅ 𝜆𝐴6
 𝑘 − 𝑠6  

(22) 
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Using the above equations, the problem of runway load balancing requires one to find values of the decision 

variables 𝑝𝑖 𝑡  such that the flow rate at the runways 𝜆𝐷𝑗
 𝑡  are as close to the desired flow rates 𝜆𝐷𝑒𝑠𝑗

 𝑡  in a 

Euclidian sense.  This can be achieved by minimizing the difference between 𝜆𝐷𝑗
 𝑡  and 𝜆𝐷𝑒𝑠𝑗

 𝑡  in a least-squares 

sense. 

It should be noted that Eq. (19) is an under-determined system of linear equations and therefore there is no 

unique combination of the decision variables that will minimize the difference between the current and desired 

landing flow rates. The problem of runway load balancing at the 𝑘th time step, is thus posed as the following 

minimization problem: 

 

minimize 𝐽 =
1

2
 𝝀 − 𝝀𝐷𝑒𝑠  

⊤𝑸 𝝀 − 𝝀𝐷𝑒𝑠  +
1

2
 𝒑 − 𝒑𝐷𝑒𝑠  

⊤𝑹 𝒑 − 𝒑𝐷𝑒𝑠   

𝝀 =  𝜆𝐷1
 𝑘   𝜆𝐷2

 𝑘  
⊤

 

𝝀𝐷𝑒𝑠 =  𝜆𝐷𝑒𝑠1
 𝑘   𝜆𝐷𝑒𝑠2

 𝑘  
⊤

  

𝒑 =  𝑝1 𝑘 − 𝑠1  ⋯𝑝6 𝑘 − 𝑠6  
⊤ 

𝑸, 𝑹 > 0 

(23) 

In Eq. (23), 𝒑𝐷𝑒𝑠  is a vector of nominal values of the decision variables around which a solution to 𝑝 is sought. 

In the present research, it is assumed that 𝒑𝐷𝑒𝑠  is a constant, i.e. 𝒑𝐷𝑒𝑠 = 𝑝𝐷𝑒𝑠𝟏, although no significant advantage is 

gained by allowing 𝒑𝐷𝑒𝑠  to be a time-varying quantity. The matrices 𝑸 and 𝑹 assign relative weights to the two 

components of the cost function 𝐽. 
Equation (23) can be solved in a straightforward manner using a least-squares solution. For a TFM decision to 

have an effect at the 𝑘th time-step, the decision must be made at the (𝑘 − 𝑠𝑖)th step for the 𝑖th arrival fix, through 

the decision variable 𝑝𝑖 𝑘 − 𝑠𝑖   . Therefore, it may be assumed that 𝜆𝐴𝑖
 𝑘 − 𝑠𝑖  is also known, and as a 

consequence, 𝝀𝐷𝑒𝑠  is also known, using Eqs. (20) and (21). 

The least-squares solution to Eq. (23) is obtained by setting 𝜕𝐽/𝜕𝒑 to zero. This results in the following 

equation: 

 𝑹 𝒑 − 𝒑𝐷𝑒𝑠  + 𝚲⊤𝑸 𝝀 − 𝝀𝐷𝑒𝑠  = 0 (24) 

where 𝚲 is a matrix defined as follows: 

 𝚲 =
𝜕𝝀

𝜕𝒑
=  

𝜆𝐴1
 𝑘 − 𝑠1 ⋯ 𝜆𝐴6

 𝑘 − 𝑠6 

−𝜆𝐴1
 𝑘 − 𝑠1 ⋯ −𝜆𝐴6

 𝑘 − 𝑠6 
  (25) 

Using Eqs. (20) and (22), and assuming that 𝒑𝐷𝑒𝑠  is a constant, it can be shown that: 

 

𝜆𝐷1
 𝑘 =  𝑝1 𝑘 − 𝑠1 − 𝑝𝐷𝑒𝑠  𝜆𝐴1

 𝑘 − 𝑠1 + ⋯ +  𝑝6 𝑘 − 𝑠1 − 𝑝𝐷𝑒𝑠  𝜆𝐴6
 𝑘 − 𝑠1 

+ 𝑝𝐷𝑒𝑠𝜆𝐷(𝑘) 

𝜆𝐷2
 𝑘 = − 𝑝1 𝑘 − 𝑠1 − 𝑝𝐷𝑒𝑠  𝜆𝐴1

 𝑘 − 𝑠1 − ⋯

−  𝑝6 𝑘 − 𝑠1 − 𝑝𝐷𝑒𝑠  𝜆𝐴6
 𝑘 − 𝑠1 + (1 − 𝑝𝐷𝑒𝑠 )𝜆𝐷(𝑘) 

(26) 

In matrix notation, Eq. (26) can be rewritten as 

 
𝝀 = 𝚲 𝒑 − 𝒑𝐷𝑒𝑠 + 𝝀0 

where, 𝝀0 =  𝑝𝐷𝑒𝑠    1 − 𝑝𝐷𝑒𝑠   
⊤𝜆𝐷 𝑘  

(27) 

It should be noted that 𝝀0 is also a known vector. Using Eq. (27) in Eq. (24) results in the following expression 

for the control variables: 

 𝒑 − 𝒑𝐷𝑒𝑠 =  𝑹 + 𝚲⊤𝑸𝚲 −1𝚲⊤ 𝝀𝐷𝑒𝑠 − 𝝀0  (28) 

In Eq. (28), the matrix 𝚲 has rank  𝑚 − 1 , and if a weight matrix  𝑹 is not included, then a solution for 𝒑 

cannot be obtained. Secondly since 𝑝𝑖  are flow fractions, the constraint 0 ≤ 𝑝𝑖 ≤ 1 must be satisfied at all times. If 

𝑝𝐷𝑒𝑠 = 0.5, then to ensure that Eq. (28) provides a valid solution, one may check that the constraint  𝑝𝑖 − 𝑝𝐷𝑒𝑠   ≤
0.5 is satisfied. If this constraint is not satisfied, then Eq. (28) can be solved with a matrix 𝑹′  where  𝑹′ >  𝑹  

such that the constraint is satisfied. 
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B. Runway Flow Balancing Results for San Francisco 

The runway load balancing methodology 

developed in the foregoing is next demonstrated 

using the radar data
19

 for flights landing and 

taking off from KSFO runways 28L and 28R. 

July 9, 2007 data is used in the present study. 

Figure 28 shows the mean flow rate of aircraft 

over two-hour intervals on this day. Combined 

flows into runways 28L and 28R are given in this 

figure. The mean flow rates are periodic, and 

typically show two peaks, occurring in different 

segments of the day. This indicates that different 

arrival routes show increased traffic magnitude at 

different times, depending on the origin airports 

of the flights. For example, the PIRAT arrival fix 

is mostly used by air traffic from the Pacific. 

Each set of histograms in Figure 28 

corresponds to an arrival flow rate function 

𝜆𝐴𝑖
 𝑡 . The flow rate can be modeled as 

piecewise continuous functions. For the present 

research, these flows are modeled in two-hour 

segments. Note the present aggregation 

methodology will produce satisfactory results only if the number of aircraft in a time segment are sufficient to 

justify description using flow rates. It is further assumed that 𝜆𝐴𝑖
 𝑡  represents the mean flow rate of a stream of 

aircraft following a Poisson process, implying that the inter-arrival time of the aircraft can be modeled as an 

Exponential distribution. 

Next, the traffic flow fractions into each of the runways from the arrival fixes are calculated to get an idea 

about the load distribution between runways.  Figure 29 shows the fraction of flows from the arrival fixes and 

departure traffic to KSFO28L. The fraction of flows to KSFO28R can be obtained by subtracting these values from 

1. The flow fraction is calculated by simply counting the number of flights that land at 28L from a given fix. 

Although the runways are situated close to each other, the destination runway is indicated in the radar data for the 

flight trajectory. In some cases, for a given segment of time, there may be no flights in an arrival route. The 

corresponding flow fraction then cannot be calculated. For example, there were no flights departing from 28L or 

28R from the airport between 4am and 6am, and as a consequence, the data point in this figure is missing for the 

corresponding segment. 

 
Figure 29. Observed Fraction of Traffic from Arrival 

Fixes to KSFO28L on July 9, 2007 

 
Figure 30. Observed Fractions of Traffic from 

Arrival Fixes to KSFO28L/28R on July 9, 2007 

Based on the radar measurement data, the fraction of flows arriving at KSFO28L and KSFO28R from all 

arrival fixes for KSFO, as well as from the airport terminals, are shown in Figure 30. In this figure, the solid line 

 

Figure 28. Flow Rate of Aircraft from KSFO Terminals 

and Arrival Fixes 
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indicates the fraction of flows over two-hour intervals for 28L, and the broken line indicates the fraction for 28R. 

Note that they sum to unity. It may be observed that between 6 am to 10 pm, flows to the two runways are split 

approximately equally. However, at night, the data reveals that 28R is used preferentially. This may be due to a 

several reasons. For instance, San Francisco handles a large volume of international traffic involving heavy aircraft 

at night, requiring the use of the longer runway 28R. 

Note that if the fleet mix in the arriving flow in a time interval is known, this can be incorporated in the 

formulation of the runway load balancing problem. For example, the flow from the 𝑖th fix to runway 28L is given by 

𝑝𝑖 𝑡 𝜆𝐴𝑖
 𝑡 . If the flow of aircraft arriving at the 𝑖th fix is composed of 3 different classes of aircraft that have fleet 

mix fractions of  𝑝𝑚𝑖 𝑥1
+ 𝑝𝑚𝑖 𝑥2

+ 𝑝𝑚𝑖 𝑥3
= 1, then three decision variables are available, one for each component of 

the fleet mix, and the analysis developed in the previous section can be used to obtain the fraction of flows of each 

component of the fleet mix. However, this level of detail was not pursued in the interest of brevity. 

 
Figure 31. Fraction of Arriving Flows from Fixes to 

KSFO28L Derived by the Optimal Runway Flow 

Balancing Algorithm 

 

Figure 32. Fraction of Arriving Flows from Fixes to 

KSFO28L and KSFO28R Derived by the Flow 

Balancing Algorithm 

Next, the flow balancing methodology is applied to the traffic flows. The flow fractions resulting from these 

computations are given in Figure 31. In this example, the runway load balancing requirements are specified as 

follows: during the first half of the day, it is desired to split the flows 30%-70% between runways 28L and 28R. For 

the second half of the day, a 90%-10% split is desired. Note that these are contrived objectives to illustrate the 

methodology.  The nominal values of the flow fractions are 𝑝𝑑𝑒𝑠 = 0.5; therefore, the variations in the flow fraction 

values over each two-hour time period, start with a value of 0.5. The algorithm chooses the appropriate value that 

will keep the flow fractions within the constraint 0 ≤ 𝑝𝑖 𝑡 ≤ 1. The mean System Time 𝑇𝑖  for each arrival route is 

obtained using the Particle Filter algorithm on data for July 9, 2007. The mean System Time values for departing 

flights from the gates are assumed to be zero in the present study, due to the proximity of the runways to the gates. A 

more sophisticated study may include the taxi time for departing flights, so as to push back the aircraft from the 

gates, just in time to utilize the runways. 

Figure 32 shows the flow fractions to the runways derived by the optimal flow balancing algorithm together 

with their desired values. It may be observed that except for the two-hour segment between 2 am and 4 am, the 

algorithm is able to maintain the landing flow fraction close to the desired values. In the 2 am-4 am segment, the net 

flow rate of aircraft arriving from the arrival fixes and terminal is a quite small. Consequently, a large change in 

landing flow fraction causes a very small change in the actual flow rate. 

The temporal evolution of arrival and landing flow rates that are given in Figure 31 and Figure 32, show two 

types of variations. The first is the variation in the mean flow rates of aircraft arriving at the fixes. The second 

variation is a spike seen at the transition between time segments due to the different values of System Time for each 

arrival route, exhibited as time delays in the propagation equations. 

The analysis and the results presented in this section show that stochastic optimization techniques coupled with 

advanced estimation algorithms based on queuing network formalism can be used to derive actionable decisions. 

The approach is general enough to be employed for the solution of flow control problems arising in runway 

utilization.  
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With minor modifications, the methodology discussed here can be used to balance traffic load between arrival 

fixes, and between arrival runways to achieve gate balancing. Moreover, this methodology can be tailored to 

optimize traffic flows on the taxiways and runways to achieve specific traffic objectives.. 

VI. Conclusions 

This paper presented the feasibility of estimating traffic flow parameters from actual measurements, and 

employing methods from statistical decision theory to create actionable decisions. The proposed methodology uses 

queuing network representation to capture the traffic flow characteristics using a few statistical parameters. These 

queuing network parameters are then estimated using a Particle Filter. Since the parameters in the queuing network 

are described by non-Gaussian distributions, conventional estimation methods are not applicable. Using the actual 

radar track data for the San Francisco terminal area, it was shown that the Particle Filter can provide accurate 

queuing network parameter estimates under varying traffic conditions with modest computational resources. 

Specifically, the estimation of System Time from the radar track data for July 9, 2007 and July 16, 2007 was 

demonstrated to show that the Particle Filter accurately determined the increases in System Time due to reduction 

runway capacity.  

Next, Statistical Decision Theory was used to formulate a decision support system for triggering traffic flow 

management in the terminal area. The approach is based on Hypothesis Testing for the statistical significance of 

observed delays. The algorithm continuously computes the confidence level in rejecting the null hypothesis that the 

changes in the System Time are due to normal statistical variation expected on a normal day. Whenever the 

confidence level in rejecting the null hypothesis goes above 75%, the algorithm triggers a TFM alert. This alert can 

be used to invoke flow controls into the terminal area, either through miles/time-in-trail or through Ground Delay 

Programs. The performance of the system was demonstrated by comparing the System Time estimates on July 9, 

2007 with those on July 16, 2007. July 16 was a day in which the San Francisco airport experienced runway 

capacity reductions. The technique was able to distinguish between deviations in the System Time due to normal 

statistical variation and those due to actual capacity reducing events in the system.  

As a second example, the System Time estimates were used to formulate an optimal runway load balancing 

methodology. In this approach, flow fractions are determined for traffic from arrival fixes so that the traffic at the 

runways will have a desired distribution. Complexity of this task arises from the different stochastic System Times 

experienced by traffic streams from the arrival fixes to the runways. The problem may be conceptualized as a flow 

synchronization problem to achieve a certain traffic load at the runways. The proposed approach is based on the 

Least Squares methodology, and its performance was demonstrated using radar track data from the San Francisco 

terminal area.  
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