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A framework for stochastic traffic flow modeling over the U. S. National airspace based 
on queuing network models is advanced. The proposed framework allows the inclusion of a 
wide variety of trajectory uncertainties such as delays due to weather deviation, air traffic 
control actions, en route wind, aircraft performance, navigation system precision and flight 
control. En route queuing networks models are developed at origin-destination airport-level,
Center-level, Sector-level and Latitude/Longitude-level spatial resolutions.  Queuing models 
for the taxi, runway and TRACON flight segments have also been developed. Two
approximations are employed to derive closed-form solutions to the queuing networks. 
Comparisons with Monte Carlo simulations and historic traffic data are used to validate the
queuing network models. Validated queuing network models are then used to analyze a few 
next-generation air traffic operations concepts. The present research demonstrates that 
queuing network model solutions can closely approximate the Monte Carlo simulations,
while delivering results at substantial savings in computational effort. 

I. Introduction 
detailed understanding of the relationship between trajectory uncertainties due to aviation operations, precision
of navigation and control, and the traffic flow metrics is essential for designing next-generation air 
transportation system. A well-known approach to stochastic analysis of complex dynamic systems is through

Monte Carlo simulations.  For instance, Monte Carlo simulation methodology with National Airspace System
(NAS) air-traffic simulation programs such as FACET1 and ACES2 can be used to quantify stochastic effects.
However, these simulations can consume enormous amounts of time and are not easily amenable for use in 
conducting rapid trade studies. On the other hand, certain formulations of queuing network models3 of the air traffic 
system can provide explicit relationships between traffic flow efficiency and trajectory uncertainties, facilitating
tradeoff studies in an effective and time-efficient manner.  Complexity of this analysis depends upon the type of the 
queuing network employed. For instance, Markovian queuing networks4 can provide fast solutions at lower fidelities
of traffic flow representation, while Coxian queuing networks5 can represent complex traffic phenomena at higher
fidelities with the attendant increase in computational effort. The intermediate QNA approximation6 provides 
moderate-fidelity results, at slightly more computational effort than the Markovian networks. Figure 1  illustrates the 
Fidelity-Computational Effort tradeoffs in the stochastic analysis of the NAS traffic flow. When properly 
formulated, queuing networks can provide high-quality stochastic results, often approaching the accuracies delivered 
by Monte Carlo simulations. This fact will be illustrated in one of the following sections. 

Queuing models are one of the earliest developments in the now well-established field of Operations
Research. According to Reference 3, much of this theory is attributed to the early works of Erlang7 on the problems
in telephony. Although most of applications continued to be in telephony and surface transportation, post-second 
World War surge in aviation lead to several applications of the queuing theory for the study of air traffic8 - 10. Since 
then, this modeling methodology has been successfully adopted for addressing various aspects of the aviation 
system by the airlines, air cargo fleet operators, and air traffic control system designers. A recent example of the
queuing network model of the NAS can be found in Reference 11. 
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Figure 1. Comparison between approaches for the Stochastic Analysis of the National Airspace System

Although several air traffic queuing models have been described in the literature, none of them have included the 
effects of trajectory uncertainties due to aviation operations and precision of navigation and control on the traffic
flow efficiency. Moreover, general approaches for developing comprehensive queuing network models of the NAS
have not been discussed in the published literature. These are the central issues addressed in the present research.
Major factors contributing to the trajectory uncertainties and precision are illustrated in Figure 2.

Some of these uncertainties influence the climb and descent flight segments, while others predominantly affect 
the cruise flight segment. For instance, aircraft performance in climb and descent are uncertain due to variations in 
weight, power plant, aerodynamics, atmospheric density, and Terminal Radar Approach Control (TRACON)
operations.  Ambient winds, navigation systems and flight plan deviations due to air traffic management and
weather are major contributors to cruise uncertainties.  Detailed uncertainty models relating these factors, and the 
methods for integrating the uncertainties into the nominal queuing models are some of the objectives of the present
paper.  

Figure 2. Factors Contributing to Trajectory Uncertainty 

The operating characteristics of queuing systems are mainly determined by three statistical 
properties, namely, the probability distribution of inter-arrival times and the service
times3,18,

19, and the mean flow fractions4 between queuing network nodes. These distributions can take 
almost any form in real queuing systems. The complexity in deriving queuing solutions 
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depends upon the form of the inter-arrival and service time distributions. For instance, if 
these distributions are exponential, the NAS can be modeled as an open Jackson network4, 

19, allowing the computation of queuing results using simple algebraic formulas.  Queues with exponential inter-
arrival and service time distributions are termed as Markovian queues.  Note that the exponential service time
distribution allows a very high degree of variability. Most of the queuing results in the literature are given for 
steady-state Markovian queues with time-invariant inter-arrival and service time distributions.

If the inter-arrival and service time distributions are not exponential, the solution process will require the 
formulation of the Chapman-Kolmogorov equation based on exhaustive state-enumeration

19, followed by the numerical solution of a large system of linear differential equations. Due to the extreme
dimensions of the resulting state space, often, solutions can only be obtained through decomposition methods5. For 
systems with small number of states, the state-enumeration methodology can be used to generate transient behavior
of the queues. Moreover, the methodology can be employed for systems with time-varying distributions.
Nevertheless, this approach is not computationally feasible for systems with very large number of states. 

Due to these reasons, it is customary to initially create models based on the Markov assumption and 
subsequently refine them to include finer details. While all the details of the air traffic flow in the NAS cannot be
completely captured using such grossly simplified stochastic models, Markovian results can serve as the baseline for 
more sophisticated queuing models incorporating more general inter-arrival and service distributions.  

As an aside, the aggregate traffic flow models discussed in the recent literature12-17 can be considered to be 
special forms of the queuing network models.  The chief difference between them is that while queuing networks
focus on the steady-state  stochastic behavior of time of arrival and transit through the system, the aggregate models
in References 12 - 17 focus on temporal evolution of aircraft counts in the airspace. In addition to being useful for
transient analysis of air traffic flow, aggregate models can also be used to create stochastic analysis of the traffic 
flow as indicated in Reference 14, with time as the independent variable. At identical spatial resolutions, it can be 
shown that the mean traffic flow rates from the queuing network and the aggregate models in References 12 - 14 
will be equal.

II. Queuing Network Models of the National Airspace System 
The queuing network abstraction of the NAS is illustrated in Figure 3. The colored circles in the figure represent 

service components, and the blue-red accordion structures illustrate the regions in which "queues" can form by
aircraft waiting for service. 

Figure 3. Queuing Network Abstraction of the National Airspace System

After being pushed back from the departure gates, the aircraft may have to wait to begin their taxi operation or
being "served" by the taxiways. Upon reaching the runway, the aircraft may once again have to wait to be served by
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the runways for takeoff. In congested airspace, the aircraft may have to wait in the TRACON in "queues" before
climbing out to the cruise altitude at the top-of-climb. The aircraft streams may then split-off in different directions
depending on their destinations. Flow fractions define the proportions of aircraft streams branching-off in various
directions, to be "served" by the en-route airspace. 

The en-route airspace is generally discretized into service areas. For instance, the airspace may be discretized 
based on Air Route Traffic control Centers (ARTCC) or air traffic control Sectors. Other possible discretization 
schemes include origin-destination pair-wise representation of the airspace, or the more general latitude-longitude 
tessellation described in Reference 14. 

A reverse of the climb sequence occurs upon aircraft arrival at their destinations. Aircraft streams from different
directions merge at the top-of-descent before being served by the descent airspace, perhaps followed by waiting in 
"queues" in the descent TRACON. After being "served" by the runway, the aircraft may then have to wait in queues 
before being served the taxiways, and finally the gates. 

As can be observed from these discussions, the queuing network model captures the statistics of the traffic flow 
through a compact set of parameters. The use of these parameters to carry out stochastic analysis of the air traffic
flow will be illustrated in one of the following sections. 

A. Computing the Parameters of Airspace Queuing Networks 
The parameters of the queuing network describing the air traffic flow in the NAS can be computed using historic

data. For the present work, daily air traffic data for the year 2007 from Aircraft Situation Display to Industry (ASDI) 
data feed from the FAA is used to generate the queuing network parameters. The ASDI data contains the position
and time stamp for every flight operating on a given day. This data is used to generate input files for FACET.
FACET simulations are then carried out to obtain aircraft track data at close intervals. The set of trajectories from
FACET forms the input data for the computation of the queuing network parameters.  

The inter-arrival times at the airports, the service times through the discretized airspace, and flow fractions at the 
network nodes can be determined by following a bookkeeping procedure to create histograms of data. These 
histograms can then be approximated to create the probability density functions for use in the queuing network 
models. As an example, Figure 4 illustrates the inter-arrival time distribution of air traffic into the NAS for a specific 
day in 2007, as well as for the entire year. 

Figure 4. Inter-Arrival Time Distribution of Flights into the Network, from Phoenix (KPHX)

Figure 5 illustrates the service time distribution for flights traveling between Los Angeles International Airport
(KLAX) and the New York's  John F. Kennedy International airport (KJFK) for a specific date in 2007 and for the
entire year.  
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Figure 5. Service Time Distribution between Los Angeles International (KLAX) and John F. Kennedy International 
(KJFK) Airports 

It may be observed from these figures that the inter-arrival times are well approximated by exponential
distributions. However, the service time distributions tend to be much more complex.

A software package termed AQUS (Airspace Queuing System) has been developed to automatically reduce a 
given ASDI data set into queuing network parameters. The AQUS software can be used in conjunction with
interactive scripting environments to derive data for formulating the airspace queuing network models and to 
generate solutions. The interface is particularly useful for the analysis of traffic flow metrics in a visual or numerical 
format. Moreover, the AQUS software can readily be accessed by scripts written in popular computational
platforms.   

B. Uncertainty Models for Queuing Analysis 
In addition to the normal variability of traffic flow, aircraft operations are characterized by uncertainties induced 

by several other factors. These were illustrated in Figure 2.  The objective of the uncertainty modeling process is to
determine the impact of various uncertainties on the service times in the queuing network models.  Models of some
of these uncertainties will be discussed in this section. Since the en-route segment forms the largest portion of the 
flight time in long-haul routes, the focus of the present discussions will be on en-route uncertainty models. Three en-
route uncertainty components will be presented.  A more detailed discussion of the uncertainty models for air traffic 
flow analysis can be found in Reference 20.  

Trajectory Uncertainty due to Navigation and Control
Modern aircraft navigation requires accurate and reliable position/velocity estimates of the vehicle. 

Consequently, the sensor uncertainty and the sensor-induced control uncertainty will impact aircraft service time in
the airspace.  The navigational information is derived from onboard navigation sensors and external telemetry 
systems such as VOR/DME and GPS. In general, the navigation data is corrupted by measurement noise. This
introduces uncertainty in the sensor outputs, and aircraft control based on this noise-corrupted sensor information 
induces additional uncertainties. 

A simplified 1-D dynamic model of the aircraft is considered for the present uncertainty modeling. This model is 
represented as a two-state system consisting of the aircraft position x, aircraft speed v, driven by a random 
acceleration nv : 
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The random acceleration term,  20 vv ,σ~Nn , is assumed to be white-Gaussian, approximating the uncertainty 

from the onboard inertial sensor system (INS/IRS/IMU). The resulting position error is a random walk process. 
Periodic position fix inputs are used to correct the drift in the random walk process. Although VOR/DME has 
traditionally been used for aircraft navigation, the recent trend has been to move towards the use of GPS for 
obtaining the position fixes. A position fix measurement model can be represented using a measurement model:

  xn
v

x
z 








 01 (2)

The measurement noise  20 xx ,σ~Nn  is also assumed to be white-Gaussian. This model can be used to formulate an 

algebraic Riccati equation21 that provides the error covariance matrix due to sensor process and sensor noise
components as:

HPRPHQPAAP TT 10  (3)

The solution to this equation can then be obtained as: 
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A similar approach is used to model the uncertainties due to flight control. Most modern commercial aircraft are
equipped with the flight management system (FMS) and one or more autopilots. Control inputs commanded by the 
autopilot are calculated based on the state estimate containing navigational uncertainty errors. Hence, the sensor
uncertainty components are fed-back into the system through the feedback control loop, and causes additional output 
uncertainty. Linear dynamics and measurement equations of the following form are assumed to model aircraft under
control:

xnBuAxx  (5)

znHxz  (6)

where  xx ,r~Nn 0  and  vv ,r~Nn 0 .  

The state estimate generated by the Kalman filter in the navigation loop is represented as 

 x�HzRPHBux�Ax� 1T   (7)

The FMS/autopilot control input is expressed as:
x�Ku  (8)

The feedback gain K is chosen to yield time constants comparable to typical transport aircraft.  Feedback control
law can be substituted in the state estimator (7) to yield 

   x�HzRPHx�BKAx� 1T   (9)

Or  

  z~RPHx�BKAx� 1T  (10)

As in the case of navigation errors, an algebraic Riccati equation can be formulated for control uncertainties as: 

    HPRPHBKAP�P�BKA0 1TT  (11)

The solution to Equation (12) can then provide the uncertainties due to control.  Nominal input parameter values 
for modeling sensor uncertainties are determined considering physically reasonable sensor error characteristics 
given in Table 1. This data is derived from References 22 and 23.

Based on these parameter settings, internal parameter values such as the autopilot gain setting and manual flight
control uncertainty for setting up the proposed simplified sensor error model can be calculated. The uncertainty
contribution due to either autopilot or manual flight control is estimated based on the given accuracy information in
Table 1. Note that the control gains are determined by assuming that the system is critically damped.  The resulting
position and velocity uncertainties are parameterized as pos and spd, respectively. The results are presented in Table
2.
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Table 1. Sensor/Control Parameter Settings 

Parameter Value Remark

System Dynamics
Update Frequency

100 (Hz) i.e.)  INS update frequency

Position Fix
Updated Frequency

1 (Hz) i.e.)  GPS update frequency

IRS drift (95%) 6*T (NM) 0 < T < 0.67, T in hours 

IRS/GPS Position Accuracy
(ANP: Rayleigh Distribution)

0.1 (NM) w/ Dual FMC

Flight Technical Error (95% )
Autopilot

0.055 (NM) LNAV with Autopilot Coupled

Flight Technical Error (95%)
Manual Control

0.208 (NM) Manual Flight with Map Display

Table 2. Uncertainties due to Navigation Sensor and Flight Control 

Speed deviation

spd   (kts)
Position deviation 

pos   (ft)

Sensor Uncertainty Only 3.57 248.3

w/ Auto-pilot 6.46 283.4

w/ Manual Flight Control 22.4 573.1

The next step in the uncertainty modeling process is that of transforming the error components in the preceding 
tables into uncertainties in service time. Service time is defined as the time interval for an aircraft to traverse a given 
airspace. The nominal service time can be calculated by dividing flight distance by the nominal aircraft speed. 
However, the actual service time varies due to the presence of navigation errors and other uncertainties. Aircraft are
controlled based on navigation sensor information provided to the autopilot or the human pilot. Navigational
uncertainties will cause variations in speed, heading and flight path angles. Speed variation due to navigation
uncertainty can either increase or reduce the service time. However, heading/flight angle deviations will always
increase the service time, since the effective flight path is stretched by any deviations from the great-circle air route.

The kinematic equations of motion for a point-mass aircraft model in 3-D configuration space are: 

 sin,sincos,coscos VhVyVx   (12)

where V  is the aircraft speed,   is the flight angle, and   is the heading angle.  Assuming that the desired

trajectory is directed along the downrange x direction, and that a feedback control system maintains the cross range
y  and the altitude deviation h  close to zero, the cross-range/altitude dynamics can be expressed as:

hkhyky hy   , (13)

Substituting these in (14), and solving for the flight path angle and heading angle yields:
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Thus, the effective speed along path can be expressed as:
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22222 hkykV
dt

dx
x hy  (15)

The service time can be obtained by integrating the reciprocal of the expression in Equation (16): 
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For deterministic systems, the evaluation of the above expression involves a quadrature. However, since the 
variables V, y, and h in the integrand in the above equation are random variables, the distribution for tf needs to be 
calculated through stochastic integration.

Exhaustive approaches based on Monte Carlo integration techniques can be employed for the stochastic
integration. However, the present approach is to develop analytical or semi-analytical techniques that can provide a
close approximation to the Monte Carlo simulation results is outlined in Reference 20. That work shows that
approximate service time distribution due to navigation and control uncertainties can be expressed as:
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Trajectory Uncertainty due to En-route Winds
En-route wind uncertainties cause the aircraft ground speed to change, resulting in en-route service time

variations. The ground speed of an aircraft Vg  is given by
wag VVV  (18)

In the above equation,  Va is the air speed and Vw is the wind speed along track. The wind speed is a function of 
time and space. In the present research, the wind speed uncertainty is assumed to be a Gaussian random process, and 
its temporal variation in the body-fixed coordinates moving with the airplane is stationary and ergodic. By assuming
that the mean value of the wind speed is piecewise constant over the flight path, the wind speed can be expressed as, 

     
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sni

iiwiiwiiw

sssss

stVstVstV

,,,
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321
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(18)

where si is the spatially discretized ith segment of the flight path, Vw0 is the mean wind speed, and Vw� is the wind 
speed uncertainty. The wind speed in each segment can be represented as a white-Gaussian noise. That is, 

   2
,

'
,

2
,,0, ,0~or,~ iwiwiwiwiw NVVNV  (19)

With the airspeed being piecewise constant, the ground speed is also a Gaussian random variable.

  2
,,0,, ,~ iwiwiaig VVNV  (20)

  
The corresponding service time uncertainty can be represented by the time integral of the reciprocal of Equation
(21).

 

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S wwaS gS

ds
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ds
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ds
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dt
T

'
0
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(21)

The above equation can be evaluated in two different ways. The first approach is the computationally-intensive
convolution of inverse Gaussian functions. The second approach is based on Gaussian approximation. The first will 
be briefly discussed here. Details on the second approach can be found in Reference 20.  



American Institute of Aeronautics and Astronautics 
9

The first step in this process is the approximation of variations in aircraft trajectory as Brownian motion with
non-zero drift. The associated service time distribution in each flight path segment can be then be shown to follow 
the inverse Gaussian distribution24, 25 or Wald's distribution: 
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0,

2
exp

2
2

2
0

3










 
 t

t

tVVs

t

s
tf

w

wa

w

s


(22)

Equation (22) represents the service time distribution for a single spatial segment. Several random variables with
these inverse Gaussian distributions  has to be convolved over all the flight segments to evaluate the service time
distribution over a specified flight path. This convolution can be carried out over several representative paths in the
airspace to create the overall wind uncertainty model. 

Trajectory Uncertainty due to Deviations Introduced by ATM
The third en-route trajectory uncertainty considered in this paper is  due to unplanned trajectory deviations 

commanded by the air traffic management system.  These path changes are introduced primarily due to avoid severe 
weather, and sometimes due to traffic congestion, and  introduce uncertainties in the en-route service time. These
uncertainties are extracted from historic data by comparing As-Filed and As-Flown trajectories. The first represents 
the trajectory that the aircraft would have flown were it not for the ATM deviation, while the second represents the
actual trajectory followed by the aircraft.  The data for quantifying these uncertainties can be obtained from the FAA
ASDI data feed.  For the present study, the first occurrence of an aircraft flight plan in ASDI is assumed to be the
As-Filed flight plan, and the subsequent occurrences are assumed to be As-Flown trajectory. A typical air traffic 
playback display in FACET using this logic is given in Figure 6. The solid blue line represents the As-Filed flight 
plan and the dotted red line represents the trajectory reported by aircraft.  Comparisons in the flight durations 
between such pairs of trajectories provide the desired data. The derived statistics is then used to evaluate the service
time uncertainty for use with the queuing network analysis. 

Figure 7 shows the distributions of the nondimensional time (ratio of the as-flown time and the as-filed time) 
calculated from the actual ASDI data for August 24, 2005. The mean values are very close to 1, and the distributions 
are slightly right-skewed, i.e. the right tail is longer. It means that, on an average, the actual duration of flight is
close to the expected duration, and the time distribution of delay is more uncertain and spread than the distribution 
of earlier-than-scheduled flights. Statistical values for two different dates are present in Table 3.

Table 3. Statistical Properties of the ATM-introduced Service Time Distributions

Date 

July 13, 2005 August 24, 2005 

Mean 1.0147 1.0207 

Standard Deviation 0.0948 0.0978 

Skewness 0.7985 0.8783 
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Figure 6. A typical As-Filed (Blue) and As-Flown (Dotted Red) Trajectories
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Figure 7. Normalized Service Time Distribution due to ATM Deviations on August 24, 2005 (As-Flown vs. As-Filed)

The uncertainties introduced by navigation and control, cruise wind and ATM discussed in the foregoing
sections can be convolved to generate the overall service time uncertainty distributions. Figure 8 shows the service 
such a time distribution due to the integrated en-route uncertainties. These service time distributions can then be
used in the queuing networks to assess their impact of the traffic flow metrics as will be illustrated in the following 
section.  

Figure 8. Integrated En-Route Service Time Distribution (with Autopilot, Nominal Flight Time = 1 hour) 

III. Air Traffic Flow Analysis using Queuing Network Models 
The traffic flow parameters computed using the approaches outlined in the foregoing section is used to formulate 

queuing network models of the NAS. As stated at the beginning of this paper, two distinct types of queuing
networks were employed in the present research. The first is the open Jackson or Markovian queuing network4, and 
the second is a refinement of the first through the use of the QNA approximation6. The chief difference between the 
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two is that in the case of Markovian queues, a single parameter, namely, the mean or the variance defines each of the
stochastic distributions in the queuing networks. If this definition is acceptable, Jackson queuing networks provide 
exact algebraic expressions for describing the queuing phenomena. On the other hand, the QNA approximation
allows the definition of a distinct mean and a variance for each of the distributions in the network. However, the 
queuing results are only approximate. Using Monte Carlo simulations, the present research has verified that the
QNA approximation provides excellent approximation to the queuing phenomena in the NAS. The following section 
will first present an analysis of the NAS using the Jackson network formulation. A more detailed discussion of the 
Jackson queuing networks of the NAS can be found in Reference 26. This will be followed by a section discussing
the QNA approximation of the queuing networks.

A. Analysis of the NAS using Open Jackson Queuing Networks
A Jackson Network can be characterized as a network of N  service nodes where each service node j )..1( Nj 

has an infinite waiting space in the queue.
1. Customers arrive from outside the system according to a Poisson input process (Exponential inter-arrival 

times) with mean arrival rate . 

2. Each node has jm  parallel servers with exponential service time distribution with mean service rate j . 

3. A customer leaving node i  is routed to an adjacent node j  with flow fraction  or departs the system with
probability1  ∑


 . The inter-arrival time distributions, service time distributions and flow fractions

from FACET runs can be used to construct Airspace-level, Center-level, Sector-level and
latitude/longitude-level Open Jackson queuing networks.

It has been demonstrated that under steady state conditions, each node j in the Jackson network behaves as if it 
were an independent jmMM //   queuing system with arrival rate j  obeying the flow-balance equation 

    ∑

   (23)

where jjjm    will ensure that the steady-state can be attained. Since each node behaves as an independent 

queuing system, it can be analyzed seperately. This fact allows the separate treatment of each node, with the flow 
balance requirement tying the back solutions together. The matrix form of the flow-balance equations is: 

     (24)

After calculating the arrival rates λ , each node is analyzed independently as follows. Let njP  indicate the

probability that n  customers are present at node j. The quantities jP0  and njP  are calculated as:
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Expected queue length at node j  (excluding customers being served) is calculated as
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where )/( jjjj m   . The expected queue length at the nodes indicates the number of aircraft in that are

subjected to delays due to air traffic congestion.  Expected number of customers at the node being served and 
waiting, is given by
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Expected waiting time in the queue, excluding the time while being served is 

j
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The expected waiting time in the queue indicates the average delay experienced by the aircraft due to congestion. 
Expected system time including both waiting and service times is given by:

j
qjj WW


1

 (30)

The expected system time indicates the total flight time through a Center including the delays due to congestion.
The quantities calculated in the foregoing can be used to quantify the traffic flow efficiency through a given 

node as
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where E(.) denotes the expected value. The traffic flow efficiency along a path in the airspace can be obtained as 
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where nj ..1 denotes all the nodes traversed along the path. 

As an example of the type of results that can be derived from the Jackson queuing networks of the NAS, the
following figures illustrate the national traffic flow characteristics at Sector-level spatial resolution. Some of the 
traffic flow metrics referenced in these figures are from Reference 27.  Figure 10 through Figure 16 show the traffic
intensities, mean delay and path efficiency from KLAX to other major airports in the NAS. 

Figure 9. Traffic Intensity at Various Sectors in the NAS 
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Figure 10. Mean Gate-to-Gate System Times using Markovian Analysis with Nominal Data 

Figure 11. Mean Gate-to-Gate Delays using Markovian Analysis with Nominal Data
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Figure 12. Mean Gate-to-Gate Efficiencies using Markovian Analysis with Nominal Data

Figure 13. Mean Gate-to-Gate System Time using Markovian Analysis with Uncertainties
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Figure 14. Mean Gate-to-Gate Delay Time using Markovian Analysis with Uncertainties

Figure 15. Mean Gate-to-Gate Efficiencies using Markovian Analysis with Uncertainties
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Figure 16. Comparison of Total Gate-to-Gate Times Using Markovian Analysis 

Once the inter-arrival rate distributions, service time distributions and the flow fractions are specified, the data 
given the these figures can be generated in under one second. This makes the queuing analysis valuable in
conducting trade studies of various types. These models can also be valuable for real time traffic flow management 
decision making.   

B. Analysis of the NAS using QNA Approximation 
The Queuing Network Analyzer6 (QNA) approximation builds on the well-known Markovian model for M/M/s 

(Markovian arrival, Markovian service process with s parallel servers).  As noted at the beginning of this section, in
a Markovian queuing model, the mean cannot be differentiated from the variance and only Markovian inputs are
allowed for the arrival and service distributions.  On the other hand, the QNA model permits the specification of first
and second moments of arbitrary arrival and service distributions, which may better approximate the real processes. 
Note that while Markovian analysis is an exact solution to an approximate model that only fits the inter-arrival and
service time distribution mean values, the QNA is an approximate solution to a higher-fidelity model that matches 
the inter-arrival and service time distributions more closely. 

As in the Markovian networks, the mean traffic flows into queuing network nodes (i.e. the internal arrival rates) 
are estimated by solving the flow balance equations. The expected flow rate through each node ( ) is given by

  





(33)

where  is the number of nodes,  is the fraction of customers in the th node that go to the th node upon 
completing service, and  is the external arrival flow rate at the th node. 

The QNA model builds on the flow balance calculation by introducing the variances for these internal arrival 
rates. The heart of the QNA approximation is the system of equations yielding the variability parameters for the 
internal flows, i.e., the squared coefficients of variation, defined as the ratio of the variance of the distribution and
the squared mean. The coefficient of variation of the arrival distribution at the jth node, 

 are given by the 

following expression:
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where  and  are constants depending on the input data: 
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(35)

In this equation, the variables , , and , are dependent on the utilization factor at the th node, , the 
number of servers at the th node, , and the squared coefficient of variation of the service time at the th node, 

 . 
In the version of the QNA algorithm used here, formulae for these variables are obtained as6: 
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(36)

The variable  is obtained from the formula   / where    is the mean flow rate from the th 
node to the th node. The key approximations, given by Equations (35) and (36),  which yield the variability
parameters for the internal flows are all based on the basic method discussed in Reference 6, viz.  asymptotic 
methods and the stationary interval method.  Using the theory in Reference 6, the squared coefficients of variation of
a split process (for example, flows from one node to several other nodes) is given by: 


    1  ,     1,2, ,  (37)

where  is the flow fraction into the th node. For example, the squared coefficient of variation of flows departing
the network at the th node is given by Equation (37) with   1  ∑


  . 

For the departure process from a node, Reference 6 uses the following formula for the squared coefficient of
variation of inter-departure time: 


  1  1    1



√
  1 (38)

After completing the variance propagation throughout the network, the first two moments for the arrival process
into each node are available and hence each node can be analyzed in isolation. The M/M/s queuing model is applied 
to each node to determine the nodal queuing metrics such as the number of aircraft in the system , the number in
the queue , the total average time spent by an aircraft in the system , and the  time spent in the queue . The
nodal queuing metrics are calculated using the following QNA approximations for the general arrival process, 
general service processes and multiple-server queues (G/G/s): 




 

2
Jackson (39)
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where 
 and Jackson are the waiting time in queue for the QNA algorithm and Jackson Network solution,

respectively, and  and  are the squared coefficients of variation of the inter-arrival time and service time of a 
node. Based on Equation (39) and Little’s Formula
19, the number if items in queue is found by the formula 


. The mean time in service and mean 

number in service are found by the formulae  
 1/, and    

 , 
respectively. The variance of these four queuing parameters are assumed to be the same regardless of whether the 
Jackson Network solution is used, or whether the QNA algorithm is used. 

The QNA approximation is next used to derive traffic flow results for Sector-level spatial discretization of the 
NAS. The results given in Figure 17 through Figure 23 given this subsection parallels those in the previous section on
Markovian Sector-level queuing network. Note that the results are similar, but not identical. It is expected that the 
QNA approximation will yield better results than the Markovian model, since the real distributions of inter-arrival
and service times contain distinct first and second moments. This fact will be demonstrated in the next section
through Monte Carlo simulations.

Figure 17. Mean Gate-to-Gate System Times using QNA Analysis with Nominal Data 
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Figure 18. Mean Gate-to-Gate Delays using QNA Analysis with Nominal Data 

Figure 19. Mean Gate-to-Gate Efficiencies using QNA Analysis with Nominal Data 
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Figure 20. Mean Gate-to-Gate System Times using QNA Analysis with Uncertainties 

Figure 21. Mean Gate-to-Gate Delays using QNA Analysis with Uncertainties
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Figure 22. Mean Gate-to-Gate Efficiencies using QNA Analysis with Uncertainties

Figure 23. Comparison of Total Gate-to-Gate Times Using QNA Algorithm 
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III. Comparison between Queuing Networks and Monte Carlo Simulations 
Monte Carlo simulation is a general approach for evaluating the stochastic characteristics of arbitrary nonlinear 

dynamical systems involving non-Gaussian distributions. Since the distributions used in the queuing networks are
derived from historic data, they are far different from the ideal Markovian distributions. Consequently, the
computation of the traffic metrics using Markovian and QNA approximation-based queuing networks are likely to
be inaccurate. Hence, Monte Carlo simulations must be employed to assess the fidelity of  the queuing network 
models.  Validation of the queuing network at Center-level discretization of the NAS will be discussed in this
section. The data used in the present study is derived from one-day ASDI traffic data feed, by eliminating duplicate 
flights. This step is essential to remove the effects of trajectory deviations due air traffic management (ATM) actions
and adverse weather. As discussed elsewhere in this paper, both of these are separately modeled as trajectory 
uncertainties in the present formulation.  The following will present  comparisons between the Monte Carlo
simulation, Center-level Jackson and QNA network, and FACET simulations.

Monte Carlo simulation of the queuing network is set up with specified inter-arrival and service time
distributions, together with traffic flow fractions at each node. As a first step of validation process,  Monte Carlo 
simulations are carried out to verify that it can reproduce the analytical results from Jackson network model of the
NAS. In this model, FACET simulations are used to obtain service rates and external arrival rates from airports.
These rates are used to generate random numbers from corresponding exponential deviates. Using 50000 samples 
per airport, flow rates through all nodes in the network can be calculated. This process demonstrated that the Monte 
Carlo simulations are able to recreate Jackson network results with a high degree of accuracy.   

Monte Carlo simulation are next conducted with 200,000 samples inserted at the airport taxi arrival point. This 
results in 200,000×180 = 900,000,000 total samples in the network. On a quad-core 64-bit processor at 2.6GHz, the
simulations consumed 44 hours. The Monte Carlo simulations do not assume any particular form for the service
time or inter-arrival time distributions, but  instead sample points from the histograms of data derived from FACET 
runs, using the rejection method24 of sampling. 

The network solution can provide flow metrics and queuing parameters at all nodes.  Figure 24 and Figure 25
provide comparisons of the mean and standard deviation of inter-arrival and inter-departure time for flows entering
and leaving the Center node from Monte Carlo simulations and the QNA network. The mean flow rate in the QNA 
model is obtained from a Jackson network solution, and as a consequence, the mean inter-arrival time and mean 
inter-departure time for a node are identical for these networks. As can be observed from Figure 24, the mean values
from Monte Carlo and QNA network are nearly-identical; with the error being less than 0.01% in all nodes.

The standard deviations of the inter-arrival and inter-departure time distributions for a node are not necessarily 
the same, even though the mean values are the same. The standard deviation of the inter-departure time compared 
with the value predicted by QNA approximation, is shown in Figure 25. While the values from Monte Carlo 
simulations and the QNA solution are not identical, QNA provides a good representation of the standard deviation 
values of the interval time of the departing items. It is implicitly assumed here that the standard deviation values 
from Monte Carlo simulations are more accurate than those of the QNA model because they use histogram
information rather than an assumed form of service time and arrival time probability density functions (PDFs).
Furthermore, the QNA model is known to be an approximate solution.

Figure 26 compares the mean number of aircraft in the Centers at any given time between the QNA model and 
FACET simulations, and with Monte Carlo simulations. It can be observed that the values obtained from QNA,
Monte Carlo simulations and FACET simulations are in close agreement. The QNA model uses Jackson network 
results for the mean number of items in the system, with modifications introduced to account for the second moment 
of the arrival and service processes. The mean number in the system from Monte Carlo simulations is obtained from
a histogram of the counts in the node, based on the time of arrival or departure of a sample. FACET simulations can
be used to obtain the number of aircraft in a Center at any given time; the time-average over a 24 hr period is used to 
calculate the FACET mean. 
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Figure 24. Mean Inter-Arrival and Inter-Departure Times of Aircraft from Centers

Figure 25. Standard Deviation of Inter-Departure Times of Aircraft from Centers
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Figure 26. Mean Aircraft Count in Centers

The results from the QNA approximation diverge further from Monte Carlo simulations when the standard 
deviations of the number of aircraft in the Centers from both approaches are compared. These are shown in Figure 
27, compared alongside with the results obtained from FACET. Standard deviation from FACET data is found to 
differ by more than 100% of the nominal MC standard deviation. This can be attributed to size of samples from
which standard deviation is calculated for each Center. It is expected that at finer spatial resolutions, more favorable 
comparisons may be achievable for the standard deviations.

Figure 27. Standard Deviation of Aircraft Count in Centers
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The flow rates derived from the QNA queuing network is next compared with those from the Monte Carlo 
simulation and FACET. The mean values from the Monte Carlo simulation, Center-level QNA network and FACET 
are presented in Figure 28. This figure shows that Monte Carlo simulations agree very well with QNA results, with
the error being less than 0.01% of the nominal mean inter-arrival time from Monte Carlo simulations. 

Figure 28. Mean Inter-Departure Times for Flows from Centers to Airports, from Monte Carlo Simulations, QNA 
Solution, and FACET

The results given in this section show that the QNA approach performs remarkably well in estimating the mean
flow rates through the nodes of the queuing network. These values also compare very well with FACET. Since the
computation of the mean values for the Jackson network is the same as the QNA approach, these remarks are 
equally valid for the Jackson network. Additional FACET runs will aid in getting more accurate values for 
comparison.  

The QNA approach also calculates improved estimates of the standard deviation of the interval time of arriving
and departing flows to within 10% accuracy in most cases.  It is found that the mean number of aircraft in each node 
of the queuing network can be calculated to within 5% accuracy in almost all cases. However, the QNA solution 
appears to underestimates the standard deviation of the number of items in service. At the present time, this 
difference is attributed to the aggregation effects introduced by spatial discretization of the airspace. 

II. Conclusions
This paper discussed a framework for carrying out the stochastic analysis of the National Airspace system using 

multi-resolution queuing network models. The approach for using historic traffic data for formulating the queuing
models was discussed, together with approaches for modeling the uncertainties in the National Airspace System. 
Although models for climb and descent have been derived in a companion paper, only the en-route uncertainty
models were presented in this paper.  NAS traffic flow characteristics were examined using both Jackson networks
and QNA approximation based queuing networks.  Due to the algebraic nature of these computations,  these 
networks are useful for rapid trade studies, and for providing real-time strategic traffic flow decision support. The 
queuing models were validated using Monte Carlo simulations.  It was shown that the queuing networks can predict 
the mean traffic flow within 5% of FACET simulations. Depending upon the spatial discretization employed, these 
networks were observed to under estimate the variance of the traffic flows. 

All the algorithms derived under the present research have been implemented in a software package for 
modeling and analyzing queuing models of the NAS. This software package uses FACET air traffic simulations to 



American Institute of Aeronautics and Astronautics 
27

generate the data required for formulating the queuing models. Scriptable environments can be used in conjunction
with this software package to formulate NAS queuing models at multiple spatial resolutions. Use of this software for 
developing decision support tools will be of future interest. 
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