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Abstract

This paper presents a novel approach to the analysis of uncertainty propagation in dynam-

ical systems. The well-known cell-to-cell mapping technique for the analysis of uncertainty

in dynamical systems is combined with a heuristic algorithm for domain discretization, that

can significantly reduce computation efforts associated with the method. This is used to

analyze the propagation of distributions arising from uncertain initial conditions in the hy-

personic re-entry problem. It is shown that the results compare very well with Monte-Carlo

simulations for initial conditions sampled from multivariate probability density functions for

the initial conditions.

I. Introduction

Hypersonic flight leading to entry, descent and landing, by large spacecraft on the surface

of Mars has been clearly identified as a research area, by NASA. A major concern with this

problem is the accuracy of the final dynamical states (for example, height and velocity)

with respect to their desired states, as a function of their initial conditions. The most

straightforward method for determining the evolutionary properties of distribution is by the

use of Monte Carlo (MC) simulations. However, for systems for three or more dimensions,

MC simulations can prove to be computationally expensive, due to the exponential scale

with which the number of required initial sample points increase.

An alternative to the study of the evolution of individually sampled initial conditions
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is to instead study more general distributions of initial conditions. These distributions are

usually generated from previously-known probability density functions whose properties are

usually derived from physically-obtained data. A discussion on the propagation of distri-

butions through discrete maps, using the Perron-Frobenius operator, is presented in Ref.

[1]. The Perron-Frobenius is a linear function of the distributions, but may be a nonlinear

function of the states. It is also often difficult to obtain for multidimensional nonlinear maps.

Consequently, if the domain of interest is discretized into a finite union of non-intersecting

subdomain, known as cells, each cell can be identified with a single component of a vec-

tor, and the Perron-Frobenius operator is approximated as a matrix, known as a Markov

transition matrix (MTM).

The process of cell-to-cell mapping has been developed by several authors, and has been

shown to be an excellent numerical approximation for dynamical systems[2–4]. Later work

by Dellnitz et al.[5] and Froyland[6], have also extended the use of these methods to the

calculation of invariant manifolds and limit cycle behavior in dynamical systems. The use

of cells to discretize a given domain greatly affects the computational burden of obtaining

the MTM for the system. If the selection of cells is uniform, without prior knowledge of the

domain of interest, the result may be a large number of cells, exponentially dependent on

the dimensionality of the system. To this end, several cell sub-division techniques have been

proposed[7, 8], that select cell dimensions iteratively, with emphasis on regions of interest,

such as chaotic attractors and limit cycles.

In this paper, a new discretization technique is proposed, that refines cells in the neigh-

borhood of a given nominal trajectory arising from a given nominal set of initial conditions.

Consequently, the number of cells required is significantly reduced. The focus of this paper is

the development of MTMs arising from the use of evolutionary discretization. These MTMs

can be used to propagate any initial distribution of initial conditions, with variable prop-

erties of mean and variance and higher moments. Thus, the repeated use of Monte Carlo

simulations for different distribution properties is not necessary. Given the distribution at

any time instant, statistical properties such as expected value and variance can easily be

obtained.

The paper is organized as follows. The method of cell-to-cell mapping and its mathe-

matical preliminaries are first presented. The new domain discretization technique is then

discussed. This algorithm is then applied to the problem of hypersonic re-entry, and the

results are compared with Monte Carlo simulations, and then summarized.
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II. Mathematical Preliminaries and Algorithm

The algorithm used for obtaining the Markov transition matrix is based on those derived

in Refs. [6, 9]. The method is suitable to treat discrete systems of the form:

xk+1 = F (xk) (1)

where xk = x(tk) ∈ Rn, and F : Rn → Rn is the discrete map, for a system of dimension n.

Continuous systems composed of ODEs of the following form can also be studied:

ẋ = f(x) (2)

In this case, the continuous map is converted to the time t map using any form of discretiza-

tion, for example, Runge-Kutta methods of any order, or symplectic discretization from a

Hamiltonian formulation. For linear systems, the discretization is performed easily using the

state transition matrix Φ:

x(tk+1) = Φ(tk+1, tk)x(tk) (3)

Let B be the domain of interest, which is assumed to be large enough to encompass all

phenomena of interest, for example, equilibria, and limit cycles. Let N = {N1N2 · · ·Nn}
denote the number of boxes per dimension, then the domain B can be written as the union

of non-intersecting cells Bi:

B =
N̄⋃

i=1

Bi, Bi

⋂
Bj = ϕ ∀i 6= j (4)

where

N̄ =
n∏

j=1

Nj (5)

Let P denote the Markov transition matrix for Eq. (1). The (j, i)th entry of P represents

the probability of transition from cell i to cell j. As shown in Ref. [6], this probability is

given by:

Pji =
µ(FBi

⋂
Bj)

µ(FBi)
(6)

where µ is the probability measure for the distribution. Since this measure is generally

unknown, it is approximated with the Lebesgue measure m. The Lebesgue measure can
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be approximated by using a uniform grid of points in each cell i. Thus, the entries of the

transition matrix can be obtained by evolving a (sufficiently large) collection of points from

the ith cell and measuring the number of points in the jth cell for each j = 1 . . . N̄ . Since

the matrix P is sparse, computations greatly benefit from using packages designed for sparse

matrices, such as CSparse[10].

III. Refinement Techniques

A. Adaptive Domain Refinement

While the above approach can be used to obtain the transition matrix, it can be very

inefficient if the domain B is very large in comparison to the region of interest. This can lead

to inaccurate transition matrices. Although the accuracy of the matrix can be improved by

selecting a larger number of points, the computation burden increases severely. To alleviate

this problem, the domain can be discretized further in regions with non-zero probability of

transition, and by extension, regions with a probability of transition larger than a threshold

value. Let pj denote the following sum

pj =
N̄∑
i

|Pji| =
N̄∑
i

Pji (7)

If pj > ε, where ε ≥ 0 is a threshold value (commonly selected as zero), then the cell Bj can

be decomposed into the following non-intersecting union:

Bj =
N̄⋃

i=1

, Bji, Bji

⋂
Bjk = ϕ ∀i 6= k (8)

This process is repeated until the volume of the smallest cell is reduced to a predefined value,

or there is no change in the total number of cells.

B. Evolutionary Domain Refinement

The number of cells requires can be further reduced if a nominal set of initial conditions

is known.An initial set of cells is assumed, with one cell containing the initial condition

set assumed large enough to include the largest possible deviation of initial conditions. As

a consequence, initially, the cells are of dissimilar dimension. The distribution vector is

initialized with all values set to zero, with the exception of the cell containing the initial

condition. This distribution is then propagated with the MTM for a given number of steps,

usually corresponding to the number of steps required by the nominal initial conditions to

4 of 9



fully propagate into the final trajectory. Only those cells are discretized, that correspond to

a non-zero entry in the final distribution.

Several advantages of this approach are immediately apparent. First, the need of prop-

agating a large number of initial conditions near the nominal condition, over the entire

trajectory, is circumvented, especially if the type of distribution changes. Second, the refine-

ment may be stopped at any level, depending on the need for accuracy. This also results in

small cells in the neighborhood of the nominal trajectory, and large cells elsewhere.

IV. Application to Hypersonic Re-Entry

The simplified dynamics for re-entry are represented by Vinh’s equations, in three states

- the height h, velocity v, and flight-path angle γ. Vinh’s equations can be written as

ḣ = v sin γ (9a)

v̇ = − ρv
2

2Bc

− g sin γ (9b)

γ̇′ =
(v
r
− g

v

)
cos γ +

1

2Bc

(
L

D

)
v (9c)

where g is the acceleration due to gravity, Bc is the ballistic coefficient of the vehicle, L/D

is the lift-to-drag ratio of the vehicle, and ρ is the atmospheric density given by

ρ = ρ0 exp

(
h2 − h
h1

)
(10)

where ρ0, h1 and h2 are parameters dependent on the atmospheric model of the planet. The

following choices of the constants in Eq. (9) are used to simulate re-entry into the Martian

atmosphere:

R⊕ = 3397 km, µ = 0.04283× 106 km3/s2,

Bc = 72.8,
L

D
= 0.3, ρ0 = 0.0019 kg/m3, h1 = 0.00288 km, h2 = 0.00589 km (11)

The methodology discussed in the previous sections is used to generate a non-uniform

grid with nominal initial conditions given by h0 = 54 km, v0 = 2.4 km/s, γ0 = −9◦. For

an integration time of 360 seconds, and a discretizing time-step of 30 seconds, the resulting

refined domain is shown in Fig. 1. The resulting number of cells after 8 iterations is 199825,

and this results in a sparse MTM of dimension 199826× 199826, with the extra ’sink’ cell[9]

used to account for all regions outside the domain of interest. The stopping condition

for subdivision corresponding to the different states are ∆h = 50 m, ∆v = 25 m/s, and
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∆γ = 0.05◦. If cells with dimensions ∆h, ∆v and ∆γ are used, then the resulting number

of cells are 106 times greater. Thus, the use of evolutionary discretization is immediately

apparent.

A multivariate normal distribution is considered, with mean values of the states given by

the nominal value, and standard deviation given by 1 km, 100 m/s and 1◦, respectively. The

initial probability mass is shown in Fig. 2. Upon using the MTM derived, a final probability

mass as shown in Fig. 3 is obtained. It is evident that the final distribution does not resemble

a normal distribution, and as a consequences, approximations based on normal distributions

will in general, not work.

Figure 4 shows the expected value of the trajectory as obtained from MTM-based prop-

agation (blue circles), and Monte Carlo simulations (red, solid line). It is evident that

MTM-based propagation can very accurately propagate distributions, and be used to obtain

the expected value and variance, and other statistical properties of distributions.

Figure 1. Points Depicting Center of Cells; Non-Uniform Size

V. Conclusions

This paper develops a new domain discretization technique that can be coupled with the

well-known cell-to-cell mapping techniques to provide accurate Markov transition matrices

without the large associated storage requirement of uniform grids. The method is shown to
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Figure 2. Initial Probability Mass

Figure 3. Final Probability Mass
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Figure 4. Expected Value of Trajectory Compared with Monte Carlo Simulations

be useful for the propagation of distributions in dynamical systems, and is demonstrated on

the hypersonic re-entry problem.
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