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This paper deals with modeling the uncertainty associated with wind forecasts. National 

Oceanic and Atmosphere Administration's (NOAA’s) RAPid Refresh (RAP) product is used 

as the wind forecast product. Actual aircraft measured data obtained by Aircraft 

Communications Addressing and Reporting System (ACARS) is treated as the ‘actual’ wind 

data. The paper creates a spatio-temporally correlated model for the error between the RAP 

and ACARS data. The error model is treated as the uncertainty in wind forecast. The wind 

uncertainty model captures the statistics of the North and East wind components as a 

function of altitude. It captures the correlation of errors both in the spatial and temporal 

domains. Furthermore, the paper develops an approach to generate sample random wind 

profiles for use in Monte Carlo simulations. The ability to generate random samples of wind 

facilitates evaluation of the robustness of NextGen concepts when subject to realistic wind 

uncertainties. The overall approach is illustrated for the terminal airspace of the San 

Francisco International Airport (SFO). 

I. Introduction 

erminal airspaces the major airports in the National Airspace System (NAS) have been identified as areas of 

high traffic density and congestion. Consequently researchers in academia, industry and government have 

focused on analysis of terminal airspace operations to relieve system-wide congestions in the NAS. The following 

NextGen concepts
1-5

 are being developed for terminal airspace super-density operations: 

1. Automation for optimal scheduling, sequencing, route assignment and runway assignment based on 

optimization algorithms
6, 7

  

2. 4D-trajectory management for scheduling conflict free trajectories using Area Navigation (RNAV) and 

Required Navigation Performance (RNP) routes
8, 9

 

3. Conflict-free continuous descent arrivals from the top of descent to the runway threshold for multiple 

flights to multiple airports of a metroplex
10-12

 

4. Ground based automation systems for conflict detection, separation assurance
13

 and merging and spacing 

operations  

5. Airborne merging and spacing technologies
14-18

 

6. Very closely spaced parallel runway operations and simultaneous operations on intersecting runway under 

instrument meteorological conditions
8, 19

 

7. Integrated arrival, departure
20, 21

 and surface operations
22

 

8. Optimal runway configuration management based on predicted weather and demand
23

 

Successful implementation and realization of benefits from most of the above listed concepts and technologies 

require answers to the following questions: 

1. What is the spatial uncertainty associated with an aircraft’s predicted position at a given time in future? 

2. What is the uncertainty associated with an aircraft's Time of Arrival (TOA) at a specified waypoint such as 

the meter fix or runway? 

3. What is the accuracy (or uncertainty) with which an aircraft can maintain self-separation with respect to a 

leading aircraft? 
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Wind prediction uncertainty is one of the primary uncertainties in terminal area operations and an understanding of 

this uncertainty is critical to answering the questions listed above.  

Also, computer simulations are performed to evaluate NextGen concepts before their eventual deployment in 

operations. To achieve sufficient realism, the ambient wind field must be incorporated in the computer simulation. 

The predicted wind field is available from weather products such as Rapid Update Cycle (RUC)
24

 or RAPid Refresh 

(RAP)
25

. However, the actual wind experienced by the aircraft does not match the predicted wind exactly. Truth 

wind fields must be generated for the simulation based on a wind prediction uncertainty model. Monte Carlo 

simulation is frequently used for stochastic analysis of terminal airspace operations. Given a predicted wind field, a 

random wind uncertainty profile must be created for each Monte Carlo iteration, to simulate the actual wind 

experienced in the simulation.  

Realistic wind profiles are expected to exhibit spatio-temporal correlation, i.e. the wind should be similar at 

nearby locations and nearby times (even across different routes). Uncorrelated wind perturbations can cause 

unnatural artifacts such as: (i) a flight experiencing alternate head wind and tail wind at successive times or (ii) the 

trailing flight experiencing completely different wind from the leading aircraft.  

This paper describes a methodology to  

1. characterize the magnitude and spatio-temporal correlation of the uncertainty from recorded data and  

2. generate spatio-temporally correlated wind uncertainty profiles for terminal airspace simulation.    

The rest of the paper is organized as follows. Section II provides an overview of the approach. The sources of the 

predicted and observed wind data are described in Section III. Section IV describes the wind uncertainty modeling 

framework. Section V describes the multi-variate Gaussian model for wind uncertainty. Section VI describes the 

process of estimating the wind uncertainty parameters such as mean, variance and correlation coefficient from data. 

The procedure for generating spatio-temporally correlated random wind fields from the calibrated wind uncertainty 

model is presented in Section VII. Section VIII summarizes the wind uncertainty modeling process. The application 

of the uncertainty modeling process to the SFO terminal airspace is described in Section X. Finally, Section XI lists 

the salient features of the developed wind uncertainty model and unique contributions of this research effort. 

II. Approach 

In this work, the wind is modeled using two components: (i) North wind component (  ), and (ii) East wind 

component (  ). The two components can also be interpreted in terms of wind magnitude and wind heading. The 

wind components are modeled as functions of spatial coordinates: latitude ( ), longitude ( ), and altitude ( ) and 

time ( ). 

                                               (1) 

Each component of the wind is in turn modeled as the sum of a deterministic component (forecast) and a 

stochastic component (forecast error). The RAPid Refresh (RAP)
25

 forecast provided by the National Oceanic and 

Atmospheric Administration (NOAA) is used as the deterministic component. 

                                          (2) 

                                   (3) 

where        and        represent the RAP forecast components along the North and East directions respectively; 

and     and     represent the RAP forecast errors along the North and East directions respectively. 

RAP provides the forecast at discrete points in both the horizontal and vertical planes. Interpolation schemes are 

used for intermediate spatial locations. The current approach also models the uncertainty components at discrete 

spatial locations. Figure 1 shows a sample discretization of the arrival routes in San Francisco (SFO) terminal 

airspace. Each discrete segment is referred to as a server and represented by   , for       . Each server is expected 

to be characterized by horizontal position coordinates and an altitude. Note that this approach was originally 

developed for discrete time/space; however interpolation can be used to determine values for any continuous 

time/space simulation. 

The wind uncertainty components are modeled as high-dimensional random vectors of size:        , where 

   is the number of time units resulting from the discretization in the time domain. The number of servers is 

determined by the geographic area of interest. For terminal area operations, the geographic area of interest could be 

the entire TRACON or simply the arrival routes in the TRACON as shown in Figure 1. The total time horizon and 

the temporal discretization are dictated by the needs of the terminal airspace operation simulation. Current research 

adopted a 1-hour duration to match the duration of the RAP forecast. A temporal discretization of 1 minute is also 

used to match the terminal airspace simulation requirements. However, both these numbers can be arbitrarily picked 

to suit the needs of the simulation. 
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Figure 1. Discretized Terminal Airspace Routes at SFO 

With the above discretization along space and time, the wind uncertainty components finally assume the form of 

a high-dimensional vector of length    as shown below: 

                                                                                     (4) 

                                                                                    (5) 

where      represents the     server at the     time-discretization. The component           represents the North-

wind uncertainty at the     server at the     time-discretization.         and         are vectors that represent the 

wind uncertainty components along the North and East directions respectively. These two vectors cover the entire 

spatial and temporal domains of interest.  

Having represented the wind using a multi-dimensional vector, the objectives of this research can now be stated 

as follows: 

1. Estimate and model realistic probability distributions             and             associated with the 

random vectors         and        . 

2. Develop algorithmic framework to generate random samples from the probability distributions  

            and            . 
The following are the expectations from the wind-uncertainty models: 

1. Realistic wind profiles are expected to exhibit spatial and temporal correlation, i.e. the wind should be 

similar at nearby locations and nearby times. Uncorrelated wind perturbations can cause unnatural artifacts 

such as: (i) a flight experiencing alternate head wind and tail wind at successive times, or (ii) a closely 

trailing flight experiencing a completely different wind than the leading aircraft. 

2. The magnitude of the wind uncertainty is expected to depend on the altitude of the aircraft. 

Section III describes the wind data sources used in modeling the probability distributions              and 

           . Section IV describes the wind uncertainty modeling framework. Section VIII describes the random 

wind profile generation framework. 
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III. Wind Data Sources 

The wind uncertainty is defined as the deviation between the actual wind and the predicted (forecasted) wind. 

Therefore, one way to model the probability distribution associated with the deviations is to study the statistical 

properties a large number of actual observed deviations. This requires the following data: (i) actual wind data and 

(ii) forecast wind data. In this research, actual wind measurements observed by aircraft flying in the NAS and 

reported through the Aircraft Communications Addressing and Reporting System (ACARS), are used as the actual 

data. As described earlier, the forecast is obtained from RAP.  

A. ACARS Data 

Many commercial aircraft operating today are equipped with sensors that can provide real-time weather 

observations (primarily winds and temperatures) via radio downlinks. The Meteorological Assimilation Data Ingest 

System’s (MADIS)
26

 automated aircraft dataset provides ACARS
27

 data obtained from many U.S. airlines. Each 

participating aircraft provides the position and wind information (             ) at approximately one-minute 

intervals. Since this data is obtained from actual aircraft flying through the airspace, the ACARS data is in general 

not available for any arbitrary location and time. It is only available for those spatial locations and times that the 

aircraft actually visited. Moreover, all aircraft do not necessarily report this data. However, a large amount of 

historical data is available to characterize the statistics of the wind uncertainty. Figure 2 shows sample trajectories of 

aircraft operating in the SFO terminal area that reported wind data using ACARS. 

 
Figure 2. Sample Trajectories of ACARS Equipped Aircraft in the SFO Terminal Area 

B. RAP Data 

The National Oceanic and Atmosphere Administration (NOAA) provides wind and atmospheric predictions for 

the entire United States. As noted before, these forecasts can be obtained through a weather product referred to as 

RAPid Refresh
25

. RAP is an operational weather prediction system covering North America that updates on an 

hourly basis. It consists of a numerical forecast model and an analysis/assimilation system to initialize that model. 

RAP provides 1-18 hour forecasts, updated hourly using a 13-km horizontal resolution and 50 vertical levels. It 

provides the predicted North and East components of the wind. Unlike the ACARS data, RAP data is available over 

a much larger grid of spatial locations. In this work, a bilinear interpolation scheme has been implemented to 

compute the wind predictions for spatial locations that do not exactly match the grid points. 

Although the current work focuses on wind modeling, it should be noted that the approach is applicable to other 

atmospheric data such as temperature and pressure. In that context, it is worth noting that both ACARS and RAP 

provide temperature and pressure data as well. 
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IV. Wind Uncertainty Modeling Framework 

A data-based approach is used for modeling the wind uncertainty in this research. Figure 3 illustrates the overall 

framework. 

 
Figure 3. Block Diagram of the Wind Uncertainty Characterization Framework 

The first step in this process is to collect and analyze past RAP and ACARS data. The recorded locations 

ACARS data are a subset of the predicted locations of RAP. Therefore, the wind prediction errors are computed for 

only those locations and times at which the ACARS data was recorded. The RAP predicted wind at the ACARS 

observation points can be obtained by appropriately interpolating the RAP data. Figure 4 shows a comparison 

between the ACARS wind data recorded by an aircraft flying along the GOLDN6 arrival into SFO and the RAP 

wind predictions for the same.  

 

 
ACARS Data (Actual Recorded Winds) 

 
RAP Data (1-hr Wind Prediction) 

Figure 4. Comparison between MADIS Recorded Winds and RAP Wind Predictions for the GOLDN6 
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The length of the arrow indicates the magnitude of the wind and the direction of the arrow indicates the heading 

of the wind. Clearly, the actual is different from the predicted wind. It is also clear from these plots that the 

deviation is not simply random at all locations. The wind errors are correlated along the path that the aircraft 

traveled. This research modeled the correlated behavior using a multi-variate probability distribution which is 

discussed in the following section. 

V. Multi-Variate Gaussian Model for Wind Uncertainty 

The wind prediction error can be thus calculated as: 

                             (6) 

                             (7) 

where          and          denote the North and East components of the wind obtained from 

ACARS; and        and        denote the North and East components of the wind obtained from RAP 

for the same spatial and temporal location as the ACARS data. 

A simplistic model of uncertainty would simply involve generating the random numbers for each component of 

the wind uncertainty vectors independently of the other components. The various components of the wind 

uncertainty vectors are the values at different spatial locations at different times. An obvious deficiency of this 

approach is that it does not capture and spatial and temporal correlations of the prediction errors.  

This research jointly generates all the components of the random wind uncertainty vectors to enforce spatio-

temporal correlation. Figure 1 enumerates the North and East components of the wind uncertainty vector. 

 

      

  

   

                                 

   
      

        
      

      
        

      
      

        
   

   
      

        
      

      
        

      
      

        
   

Figure 5. North and East Wind Uncertainty Vectors 

 

This approach involves modeling the wind uncertainty components along North and East directions as 

independent multi-variate Gaussian distributions: 

                     (8) 

                     (9) 

where    and    represent the mean of the wind uncertainty vectors (of length     associated with the 

North and East directions respectively; and    and    represent the covariance matrices (size      ) 

associated with the wind uncertainty along North and East directions respectively. Note that        , 

where   is the number of servers and    is the discretization in the time domain. 

Using the definition of the correlation coefficient                   , each component of the covariance 

matrix can be written as 

                          (10) 

Figure 6 shows the structure of the proposed covariance matrix for an example with    3 servers and     3 

time discretizations, giving rise to a wind uncertainty random vector of size 9. Thus, the size of matrix is     . 

Note that the     sub matrix shown in green in the top left corner denotes the covariance matrix for all the servers 

at the same time   .   The orange squares illustrate the various covariance terms associated with the first server    at 

all possible times. The diagonal terms outlined in black denote the variance associated with a server at a given time. 

The multi-variate Gaussian representation of wind-uncertainty has the following features: 

1. It accommodates spatial correlation in wind uncertainty. Therefore, wind samples generated using this 

model will result in nearby servers at the same time having similar wind components. 

2. It accommodates temporal correlation of wind uncertainty. Therefore, wind samples at a given spatial 

location and nearby time instances will have similar wind components. 
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Figure 6. Structure of the Covariance Matrix 

VI. Estimating the Wind Uncertainty from Actual Data 

Having established the representation of the covariance matrix, the next step is to estimate the mean vectors 

      and the covariance matrices       using actual data. Since the covariance matrix is parameterized in terms of 

  and  , estimating the mean and variance involves identifying  parameters       from observed wind uncertainty 

data. 

 It is assumed that the following data is available: 

1. A large number of ACARS North and East wind data samples each tagged by time, latitude, longitude, and 

altitude. 

2. North and East wind components from RAP forecast data for the same time, latitude, longitude, and 

altitude of the ACARS data samples. 

The above data can be used to determine the North and East component of the wind forecast errors for each of 

the ACARS data samples. However, it is unrealistic to expect to have actual wind data measurements at all the 
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servers               at all times    . Hence this research effort proposes an approach that is particularly amenable 

for computation using sparse wind error data. The approach is described in detail in the following sub sections. 

A. Calculating the Mean     and Variance (σ) of the Wind Errors 

Ideally, given large amounts of data, the mean   and variance   of the wind errors can be determined as a 

function of the latitude, longitude, altitude and time.  

                                                                          (11) 

Since RAP provides a constant forecast for a 1-hour duration, there is no reason why the wind errors would be an 

explicit function of time. Hence we can drop the time dependency. Also, the wind errors are independent of the 

location in the horizontal plane          , but vary with the altitude      . Hence, the mean and standard deviation 

are modeled as functions of altitude only. 

                                                        (12) 

These mean and variance terms can be computed by simply binning all the observed forecast errors into different 

altitude levels and calculating the values for each bin. Figure 7 shows the relationship between wind uncertainty and 

altitude computed using 15 days of ACARS and RAP data around SFO. The box plot clearly portrays the high 

uncertainty and higher altitude. However, it should also be noted that magnitude of the nominal wind magnitude is 

also higher at higher altitudes. Also, note that the mean error is close to zero, but not exactly zero. 

 
Figure 7. Wind Uncertainty as a Function of the Altitude 

 

Figure 8. Mean of the North and East Wind Uncertainty as a Function of Altitude 
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Figure 9. Standard Deviation of the North and East Wind Uncertainty as a Function of Altitude 

Figure 8 and Figure 9 provide the mean and standard deviation respectively of the North and East components of 

the wind uncertainty. The increase in wind prediction uncertainty with altitude can be seen from Figure 8. The 97% 

confidence bounds on the calculated mean and standard deviation values are shown as dashed lines in both figures, 

and serve as indicators of the quality of the results. This is because statistics such as mean and standard deviation are 

calculated from samples, and are therefore generally different from the unknown statistics of the population. In this 

work, calculation of confidence bounds is essential because the number of samples can greatly vary with respect to 

altitude. For instance, when building wind error models in the terminal area, fewer wind measurements are obtained 

at cruise altitudes than at flight levels lower than 20,000 ft.  

B. Calculating the Correlation Coefficients     for the Wind Errors 

Consider the two correlation terms     and     from Figure 6. The term     denotes the correlation between 

server    and server    at the same time   . The term     denotes the correlation between server    and server    at 

the same time   . The correlation between servers    and    at the same time instant should be the same irrespective 

of whether the absolute time is    or   . Thus the correlation is dependent on the relative distance between the 

servers and relative time difference between the time instants of interest, and not the absolute values of location or 

time. Hence, the current work models the correlation   in the wind prediction uncertainty as a function of the 

relative distance    between the two servers and the relative time    between the two time instants of interest. The 

correlation between the     server at the     time instant and     server at the     time instant can be expressed as 

                       (13) 

To derive this functional dependence, pairs of ACARS-RAP data samples are binned according to their spatial 

separation (relative distance) and temporal separation (relative time). The temporal separation resolution is chosen 

as 1 minute and the range is chosen as 0-30 minutes. The resolution of spatial separation is chosen as 1 nmi and the 

range is set to 60 nmi. Figure 10 shows the different bins and their correlation coefficients as a function of relative 

distance and relative time. 
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Figure 10. Correlation Coefficient as a Function of Relative Time and Relative Distance 



  

American Institute of Aeronautics and Astronautics 
 

 

10 

Consider a single bin in the above figure and let the number of data pairs in the bin be  . It should be noted that 

bins with very small spatial separation and very small temporal separation will not have any data pairs as it would 

violate the inter-aircraft separation requirements.  Let the two data samples within a pair be represented by the 

symbols   and  . Consider the following matrix representation of the North component errors for all the pairs in a 

given bin 

        

 
 
 
 
 
 

                
                
                
                                     

                        

                      
 
 
 
 
 

 (14) 

where the subscript    and    refer to the first and the second element in the     data pair. The covariance matrix for 

the above data can in turn be expressed as the following     matrix: 

         
      

      
   (15) 

The correlation coefficient for the bin which is in turn is characterized by a spatial separation and temporal 

separation can now be calculated as follows: 

          
   

        

 (16) 

The procedure described above is repeated for all the (           ) bins. The correlation coefficients thus 

obtained using 15 days ACARS and RAP data around SFO is shown in Figure 11. As expected, the spatial 

correlation is strong for smaller spatial separations; it gradually wanes as the relative distance increases. The data 

shows that the correlation remains constant over time.  

 
Figure 11. Correlation Coefficient as a Function of Relative Distance and Relative Time 

Function fits and interpolation are used to determine the correlation coefficient at any arbitrary relative time and 

relative distance. Also note that the data provided no correlation between the North and East components of the 

wind, as expected.  
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VII.  Constructing the Covariance Matrix from the Estimated Mean  , Variance   and Correlation 

Coefficient   

The covariance matrix can be assembled from the estimated mean  , variance   and correlation coefficient   as 

follows The covariance term between the     server at the     time instant and     server at the     time instant is 

modeled as follows:                    . 

                 

                             

      
                       

                       
                  

                
                       

                       
          

                      
                       

                       
  

         
                    

                       
                  

                   
                    

                       
          

                         
                    

                       
  

         
                       

                    
                  

                   
                       

                    
          

                         
                       

                    
  

Figure 12.Constructing the Covariance Matrix Using the Relative Correlation Terms 

A key step in using the above covariance matrix for generating correlated random numbers is that the covariance 

matrix is positive definite so that Cholesky decomposition (     ) can be performed. The covariance matrix 

estimated using the above approach may not be positive definite due to the following reasons: 

1. Numerical error in processing the data 

2. Use of limited number of data samples  

3. Sensor error in the MADIS wind observations 

If the numerically generated covariance matrix is not positive definite, the nearest positive definite matrix can be 

constructed using the procedure described below. First, an Eigenvalue Decomposition is performed on the 

covariance matrix   such that:   
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                 (17) 

where   is a square         matrix whose     column is the     eigenvector of   and   is a diagonal matrix whose 

diagonal elements are the eigenvalues of  . Note that symmetric matrices are diagonalizable and can always be 

decomposed into this form. Note that the covariance matrix   developed above is symmetric. 

The second step involves finding the nearest positive definite matrix    to the diagonal eigenvalue matrix  . 

Positive definite matrices have all positive eigenvalues.    is a diagonal matrix which is computed by replacing the 

negative eigenvalues of the   matrix with zero as follows: 

          

                       

     
       

(18) 

The approximated covariance matrix    can be written as follows: 

                   (19) 

The approximation error introduced due to the replacement of the negative eigenvalues can be quantified by the 

relative change in the Frobenius norm of the covariance matrix.  

               
      

         

            

 (20) 

The validity of the approximation requires that      be very small. Calculating all eigenvalues for the covariance 

matrix can be slow especially if the number of servers or the number of time instances is high. Hence, by using the 

Arnoldi algorithm
28

 only the first few eigenvalues with the largest magnitudes and their corresponding eigenvectors 

can be chosen to construct the covariance matrix.  

VIII. Random Wind Sample Generation Framework 

The previous section described the procedure for estimating the   ,   ,   , and    corresponding to the multi-

variate Gaussian distribution associated with the wind uncertainty. The current section deals with process for 

generating random wind samples from these distributions. Whereas generating uncorrelated random numbers is 

straight forward, the approach for generating correlated random numbers involves the following steps: 

1. Factor the covariance matrix as follows      . Note that the eigenvalue decomposition performed in 

Section VII can be used to determine the   matrix as follows: 

                 (21) 

 where the square-root of    is another diagonal matrix with entries      . 
2. Generate a random vector   (length   ) from an uncorrelated Gaussian distribution with zero mean and unit 

standard deviation. 

3. Transform the uncorrelated random vector  :          . It can be shown that          .  
4. The above process needs to be repeated both along the North and East directions. 

IX. Summary of the Wind Uncertainty Modeling Process 

The procedure for the wind uncertainty characterization and random wind profile generation can be summarized 

as follows: 

1. Determine the MADIS wind observations in the given geographic area and time interval under 

consideration. 

2. Obtain the RAP wind predictions for the same location and time instants as the MADIS wind observations. 

3. Determine the wind prediction error by taking the difference between the MADIS and RAP data at the 

same location and time. 

4. Classify the wind prediction error samples into bins for various altitude levels and determine the mean   

and variance   of the wind prediction uncertainty as a function of the altitude. 

5. Classify the wind prediction error sample pairs into bins for relative distance    and relative time    and 

determine the correlation coefficient   as a function of the relative distance and relative time. 

6. Determine an appropriate function fit for the correlation coefficient as a function of relative distance and 

relative time. 

7. Determine the spatial and temporal resolution of the grid for generating the random wind profiles. 

8. Create the covariance matrix   for the random wind uncertainty vector using the mean and variance   as a 

function of the altitude and the correlation coefficient         .    
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9. Perform eigenvalue decomposition to ensure positive definiteness of the covariance matrix   and determine 

  such that      . 

10. Generate correlated random wind field by applying the transformation as           to an uncorrelated 

random vector         .  

X. Results 

The approach described in the previous sections was applied to the SFO terminal airspace. Figure 1 shows the 

terminal area routes used in this example. The routes are discretized into 3 nmi servers which results in about 50 

servers. The temporal domain is discretized into 1 minute intervals over a total of 60 minutes. The resulting wind 

uncertainty vectors are of length      both along the North and East directions. ACARS and RAP data over a 

fifteen-day duration were used computing the       vectors and the covariance matrices    and   . The covariance 

matrices are approximated to the nearest positive definite versions using the procedure described in Section VII. The 

percentage change in the Frobenius norm was 0.65% indicating that the approximation error was very small. Even if 

only the largest 20 eigenvalues were used, the percentage error in the Frobenius norm was 5.26%. Wind uncertainty 

profiles were generated for the 50 servers at the 60 time instants using the framework described in Section VIII.  

 
(a) Uncorrelated Wind Profile 

 
(b) Spatially Correlated Wind Profile 

Figure 13. Correlated and Uncorrelated Wind Profiles along SFO Arrival Routes  

 
Figure 14. Temporal Behavior of Uncorrelated Wind 

Samples 

 
Figure 15. Temporal Behavior of Correlated Wind 

Samples 

Figure 13 compares the correlated wind profiles generated using current research with the uncorrelated ones. The 

uncorrelated wind profile is shown in sub-figure (a) and the correlated wind profile is shown in sub-figure (b). The 

black arrows represent the wind magnitude and directions at the spatial locations (servers) indicated by solid circles 

at one particular time snap shot. It can be inferred from the sub-figure (a) that the wind magnitude and direction 
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change abruptly over nearby locations, indicating the absence of spatial correlation. On the hand the wind profile in 

sub-figure (a) consists of much smoother variation of the wind over the spatial domain. Thus continuous motion in 

the spatial domain results in continuous correlated variation of the wind. 

Figure 13 illustrated the spatial correlation of the wind samples generating using the current approach. Figure 14 

and Figure 15 illustrate the temporal correlation of the wind samples. The figures plot the North wind magnitude at a 

particular spatial location as a function of time. The uncorrelated wind sample shown in Figure 14 indicates high-

frequency behavior characterized by the sign flips of the North wind component which is 59%. On the other hand 

the correlated wind sample in Figure 15 indicates that the sign flips are far fewer at 20%. 

XI. Salient Features and Unique Contributions of Research 

This paper presented a wind uncertainty modeling approach that calibrates the magnitude and spatio-temporal 

correlation based on RAP predictions and ACARS observations, and generates spatio-temporally correlated wind 

fields for terminal airspace simulations. The salient features of the wind uncertainty model developed under this 

research effort are as follows: 

1. It models spatio-temporal correlation of wind errors along the same route and across different routes. 

2. It captures the wind prediction uncertainty as a function of altitude. 

3. The model structure is generic enough to accommodate any functional form of the spatio-temporal 

correlation. 

4. The parameters of the model are derived from actual RAP and ACARS data. 

5. The approach is generic, so it can be used for any airspace in the NAS. 

The unique contributions of this work with respect to previously published literature on wind prediction 

uncertainty are as follows: 

1. Ren and Clarke
29

: Ren and Clarke developed a wind uncertainty model suitable for consecutive flights pairs 

conducting continuous descent approaches while following the same ground tracks and vertical profiles. As 

such, their model is valid for a pair of consecutive flights flying along a single route. In contrast, the current 

model is applicable over a larger spatial and temporal domains.  

2. Cole et al.
30

: This paper performed a detailed statistical characterization for both spatial and temporal 

correlation coefficient of the wind prediction uncertainty. However this paper does not provide a method to 

generate correlated random wind profiles for a terminal area routing structure.  
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