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The application of Queuing Theory to quantify the relationships between trajectory 

uncertainties due to aviation operations, precision of navigation and control, and traffic flow 

efficiency in the National Airspace System is discussed. This work builds on a previous 

research effort on Markovian queuing network models of the NAS. While the Markovian 

network model provides closed-form analytical solutions, it does not model arrival and 

service distributions with high fidelity. On the other hand, Phase-Type distributions such as 

the Coxian can model any distribution with arbitrary accuracy, however analytical solutions 

for such queuing networks are not available. This paper develops a numerical solution 

methodology for analysis of queuing networks with Coxian arrivals and service time 

distributions. This approach is based on state enumeration and propagation of Chapman 

Kolmogorov equations. This paper develops novel numerical methods to obtain exact 

solutions to the departure process from a queue as well as aggregation and disaggregation of 

flows with arbitrary inter-arrival distributions.  Sample results for a Center Level model of 

the U.S. National Airspace System are presented.  

I. Introduction 

nderstanding the relationships between trajectory uncertainties due to aviation operations, precision of 

navigation and control, and the traffic flow efficiency is central to the design of Next Generation Air 

Transportation Systems (NextGen). In all that follows, the traffic flow efficiency is defined as the degree to which 

the aircraft is delayed due to congestion effects as compared to an unimpeded flight along the same route. 

Congestion arises when the demand exceeds capacity in a region of the airspace, which requires that the upstream 

aircraft entering the airspace must be delayed until the capacity becomes available.     

The analysis of the National Airspace System (NAS) using Markovian network models at Airspace-level, 

Center-level, Sector-level and latitude/longitude-level spatial resolutions were discussed in Refs. 1 and 2. The 

assumption of exponential inter-arrival time and service distributions was central for deriving the results in that 

paper.  

However, observations from FACET simulations with real traffic data reveal that at certain spatial resolutions, 

the service time distributions are poorly represented by exponential probability density functions. For instance, it 

may be observed from Refs. 1 and 2, that the service time distribution is not necessarily exponentially distributed. 

Consequently, accurate computation of the flow metrics such as the probability distribution of the number of 

elements in service, expected queue length and waiting time require the consideration of realistic arrival and service 

distributions in the queuing network.  

One approach for deriving queuing results using more general inter-arrival and service time distributions is to 

approximate these processes by Erlang or Coxian distributions
3
. This produces a semi-Markovian queue, which can 

be numerically solved using the state-enumeration approach
4
. Queuing networks with semi-Markovian nodes require 

additional computations at node junctions. These computations can also be formulated using the state-enumeration 

process. While networks with few nodes can be directly approached in this manner, more realistic networks may 

involve extremely large number of states, requiring solutions based on decomposition. The following sections will 
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discuss the approach adopted for formulation and solution of the Center-level queuing network model incorporating 

Coxian inter-arrival and service time distributions.   

II. Center-Level Coxian Model 

Unlike the Jackson model of the NAS discussed in Ref. 1, the service time distributions and inter-arrival 

distributions into the network are given by multi-phase Coxian distributions.  Coxian distributions are fitted to the 

service time and inter-arrival times obtained from FACET using a non-linear least squares curve fit. The resulting 

distributions are used in the network solution for Coxian nodes, described in the next section.  

A. Node Capacity 

The capacity of Centers translates into the number of parallel servers employed by the Center node. As 

discussed in Ref. 5, the Center capacity tends to be large. Due to the large number of parallel servers resulting from 

this assumption, the solution for the network using state-enumeration techniques will turn out to be computationally 

intractable. Therefore, the items in the network are quantized into groups of aircraft. The network solution is 

obtained by treating a group of aircraft as a single item, with the number of parallel servers in the Center being 

factored by the group size. These concepts are explained in detail in the following sections.  

B. Introduction of NAS Uncertainties in the Coxian Network Model 

The service rates, arrival rates and Center capacity are obtained from FACET simulations, and are used to 

model the NAS as a network of queuing nodes. Since it is possible to run FACET simulations using as-filed flight 

data, the network of queues representing the NAS under these circumstances can be assumed to simulate the NAS 

under ideal conditions. Models representing different sources of uncertainty discussed in Refs. 5 and 6 can then be 

incorporated into the solution framework. These uncertainty models modify the service rates and Center capacity, 

and their effect on the network parameters can then be examined. Methods for incorporating the uncertainties into 

the network model are discussed in Refs. 5 and 6. 

III. Solution Methods for the Coxian Networks 

This section presents techniques for solving a network composed of nodes with       queuing discipline as 

shown in Figure 1. It is assumed at the outset that the network is stable in the sense that in steady state, the network 

capacity exceeds the inflow. It is also assumed that the general inter-arrival and service time distributions can be 

represented by an  -phase Coxian, and  -phase Coxian distribution, respectively. It is known that the Coxian 

distribution is dense in the field of all positive-valued distribution, that is, a Coxian distribution of suitable order and 

parameters can be used to approximate any given probability density function. Consequently, an equivalent problem 

is to solve a network of          nodes. Each node in the network is composed of up to five operations:  

1) Arrival into network: depicted by a green arrow, indicating that an item has entered the network from the 

external environment.  

2) Aggregation: depicted by a red circle, this represents the combined input into a queuing system, from external 

arrivals, as well as arrivals from the other nodes in the network.  

3) Queuing system: this represents the service performed with a service time defined by a  -phase Coxian 

distribution on items arriving with an  -phase Coxian distribution of inter-arrival times, with   servers in 

parallel. The result of the queuing system is a distribution of inter-departure times of the items.  

4) Disaggregation: depicted by a red circle, this represents the branching of items departing from a node to the 

other nodes of the network.  

5) Departure from network: also depicted by a green arrow, this indicates that an item has left the network. The 

flow prior to the disaggregation point, and the disaggregated flows, including departure from network, must 

conserve flow balance.  

It should be noted that it is not necessary for each node to contain all of the five operations listed in the 

foregoing. 
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Figure 1. Network of G/G/s Nodes 

A. Prior Work and Preliminary Developments 

There is a considerable amount of literature available on the solution of queues with different classes of arrival 

and service time distributions. The simplest queuing discipline is the       queue, where the arrival and service 

processes are assumed to be exponential, with arrival flow rate  , and service rate  . Analytical solutions for this 

type of queue, as well as the multiple server variety (     ) are well-known, and available in standard texts on 

queuing theory
4
.  An analytical solution for a queuing service with the       discipline using the method of 

generating functions is given in Refs. 7 and 8. In particular, the latter work compared results with numerical 

techniques
9
 and derived an exact algorithm to calculate the number of items in the system at steady state, and 

queuing analysis parameters such as the waiting time.  

Several works in the literature also analyze the steady-state probabilities of networks that are composed of 

Markovian and semi-Markovian queuing nodes. The simplest of these is the Jackson network
10

, which is a network 

composed of nodes with exponentially-distributed service times and Poisson arrivals.  

An essential aspect of the analysis of queuing networks is the characterization of the departure process of a 

queue, since this process will serve as the input to the remaining nodes in the network. A survey of historical results 

in the analysis of the departure process has been presented in Ref. 11. Later work
12,13

 approximates the departure 

process of a queue, as well as disaggregation, using the first two moments.  

A method for the approximate analysis of a network of single-server nodes with arbitrary distributions has 

been developed
14

, which uses approximate formulae to calculate the first two moments of the inter-departure time 

distribution. Reference 15 develops a queuing model of the National Airspace System using Erlang distributions to 

model the service time distribution, and exponential distributions to model the arrival processes. The Queuing 

Network Analyzer algorithm
16

 also uses approximate formulae to solve for the first two moments of aggregated, 

disaggregated, and departing flows through nodes in a queuing network. This algorithm has been used to analyze 

traffic flow in the NAS, in Ref. 2. 

 Reference 17 has developed approximations for the departure process of a single-server node with phase-type 

service, and a superposition of phase-type arrivals. Approximations for the departure process have also been 

developed
18

. 

The research in this paper develops a convergent algorithm for solving a network of nodes with Coxian 

service, with Coxian external arrivals. The component processes of aggregation, disaggregation, and queuing service 

are solved individually using semi-analytical techniques for matrix exponential calculations. Recent research in the 

analysis of matrix exponentials
19

 has resulted in the development of extremely efficient algorithms for the evaluation 
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of repeated products of matrix exponentials and vectors. More recently
20

, techniques have been developed for the 

evaluation of the exponentials of sparse matrices. These techniques allow for the fast solutions to the state-

enumeration problem in systems with very large number of states. A method is developed to obtain the inter-

departure time distribution of the component processes to a given accuracy.  

B. Queuing Service 

In this section, the state-enumeration procedure is developed for the analysis of the departure process of a 

queue with Coxian service time distribution and multiple servers, with an arrival process that can also be represented 

by a Coxian distribution. It is assumed that the arrival process into the node can be represented by an  -phase 

Coxian distribution (a “generator" node), with parameters   , and transition probabilities   . Service is rendered by 

a  -phase Coxian service node, with parameters   , and transition probabilities   . This node has   identical servers 

with identical parameters. A schematic of this queuing system is given by Figure 2.  

 
Figure 2. Queuing Service 

The characterization of the state space in a         queuing service presented here has been derived in Ref. 8. 

The state of the system is uniquely defined by three quantities: 1) the phase of the generator node, 2) the number of 

items in service in the service node, and 3) the number of servers in the same phase, for every phase of the service 

node. Since each server is identical, the number of servers in each phase of the service node is sufficient to uniquely 

identify each state. The state of the system is represented by the sequence                 where   is the phase of 

the generator node,   is the number of items in service, and              denote the number of servers currently in 

phases        , respectively. It should be noted that  

 

   

 

   

                   

   

 

   

                 

(1) 

If the maximum number of items in the system is denoted by  , then      .  

The forward Chapman-Kolmogorov equations
21

 for the node can be written by assuming that at each instant, 

the state transitions occur as birth-death processes. Consequently, the states evolve according to the following linear 

equation: 

       (2) 

where    is the probability of the system being in the  th state. The variable     is the      th entry of the matrix  , 

and denotes the rate of transition from the  th state to the  th state. The transitions from a given state 
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                can be classified as a phase change in the generator or service node, arrival into the service node 

(equivalently, departure from the generator node), and departure from the service node.  

C. Total Number of States 

Let         be the total number of states of the system, which is also the length of the state vector in Eq. (2). 

Since the complexity of the solution procedure is dependent on        , its value needs to be obtained at the outset. 

This  value is given by:  

          
  

   
 

       

        
   

 
  
     

   
     

  (3) 

State-enumeration for a queue with multiple servers with identical characteristics can result in a large number 

of states. Let   be the increase in the number of phases or servers, for a system with a single-phase generator node. 

Let    and    be defined as follows:  

 

    
       

 
   

    
       

     
  

(4) 

In Eq. (4),    and    denote the number of states when the number of items and number of phases are respectively 

increased by  . Using Eq. (4) it can be shown that:  

    
        

         
 
                

                
   (5) 

In most cases,    , and therefore 

     
   

   
 
 

   (6) 

The foregoing expression indicates that an increase in the number of server node phases results in larger dimensional 

state space than an increase in the maximum number of items in the queuing system.  

D. Steady State Distribution 

The steady state probability distribution for the system denoted by   , can obtained by solving      , with the 

constraint        . Whereas an analytical formulation to obtain a solution to the above equations is given in Ref. 

8, matrix exponential methods that take advantage of the sparse structure can also be used efficiently to propagate 

any initial condition to steady state. In other words, 

       
   

              
   

               (7) 

where    is an arbitrary initial vector. Without loss of generality, this vector can be defined as 

                                     . Highly efficient techniques
19

 are available to compute the products of 

matrix exponentials with vectors. The matrix exponential method is also chosen because it is useful in obtaining the 

departure process of a queue as a function of time, as will be shown in the next section. 

E. Departure Process of a Queue 

The departure process of a queuing system can also be obtained using state enumeration. The output process 

for Poisson arrivals and service with multiple servers is derived in Ref. 22. This method is extended to Coxian 

arrival and service rate distributions in the following. The transition rate matrix   can be written as: 

                                             (8) 
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where each of the first four component matrices in the above equation correspond to the four types of transitions 

detailed in the end of Section III.B. The matrix       is a diagonal matrix that denotes the transition rate from each 

state into itself, and whose entries can be obtained from the negative row sum of the first four component matrices.  

Let the matrix   denote the following:  

                                               (9) 

Given the steady state distribution   , let    denote the following:  

    
              

                 

  
   

      
 (10) 

The vector    is the probability (suitably normalized) associated with the system states after departure of an item. 

Let      denote a vector, whose  th component       denotes the probability that the system is in state   after an 

inter-departure time segment. As noted in Ref. 22, the complementary cumulative distribution function, also known 

as the survival function, and denoted herein by c.c.d.f., can be obtained by the following equation: 

                        

 

   

 (11) 

For a stable linear system representing the Chapman-Kolmogorov equations for queuing, with sufficiently large 

maximum number of items, the above relation can be approximated as follows: 

       

 

   

       

 

   

 (12) 

Consider the dynamical system      , with         given by Eq. (10). This system of linear differential 

equations governs the evolution of the states with no departures from the system. The cumulative distribution 

function (c.d.f.) of the departure process, at steady state, is thus given by:  

                         

 

   

 (13) 

The probability density function (p.d.f.), can be obtained by differentiating the c.d.f. with respect to time:     

                         

 

   

            

 

   

 

   

 (14) 

F. Disaggregation 

The process of disaggregation shown in Figure 3, occurs after the queuing service has been rendered. In 

disaggregation, an arrival process with given  -phase Coxian distribution parameters             , and 
                , is split into   flows, with flow fraction    through   , such that             . A flow 

that leaves the network can also be modeled as one of the branches of the disaggregation process. The Jackson 

network approximation shows that the flow rates after a disaggregation point, multiplied by their flow fractions, sum 

to the flow rate before the disaggregation point. However, this only enables one to calculate the mean inter-departure 

time of the disaggregated distributions. Reference 14 used approximate analytical formulae to obtain the second 

moment of the disaggregated flow. Reference 23 used an iterative decomposition algorithm to obtain approximate 

solutions for a fork / joint queuing system. In this section, an exact analysis of the disaggregation process is 

presented using the enumeration of states.  
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Figure 3. Disaggregation 

 

Of interest is the departure process from the  th branch, where        . The flow prior to the disaggregation 

point is assumed to emerge from a generator node similar to the one described in Section III.B. The states of the 

system are thus composed of phase changes in the generator node, and departures from the generator node, 

whereupon the generator returns to the first phase. The states are indexed such that the first       states 

correspond to phase changes, and the next   states correspond to departures along each branch, with the system 

returning to the first phase of the generator node. Let the state vector for departure through the  th branch be denoted 

by   , and let this vector’s  th component be denoted by    . The initial condition for the c.c.d.f. of the departure 

process is then given by                , and          ,         . The forward Chapman-Kolmogorov 

equations for the c.c.d.f., for states   through     can be written as follows:  

 

                          

                            
 

                                                                

 (15) 

 

For the remaining state equations, it is convenient to define the vector   , whose components     are given by       , 

    , and       when    . Furthermore, define         . The remaining state equations can then be written 

as follows:  

 

                                                      

                                                     

                    

                                                    

                                                    

                    

                                                      

                                                    

                    

  

                                                        

                                                 

                       
 

(16) 

Equations (15) and (16) can be conveniently rewritten as the linear system         , and propagated in time to 

obtain the departure time distribution at the  th branch.  
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G. Aggregation 

The aggregation of flows occurs before entry into the queuing system. As shown in Figure 4, the process of 

aggregation combines   Coxian arrival processes with the number of phases given by        , and with the 

parameters of the  th input denoted by                 and                      . Arrivals from sources external 

to the network can also be modeled and included at the point of aggregation, using this technique. As was observed 

in the previous section, the flow rate at aggregation is the sum of the flow rates prior to aggregation. Several 

approximate methods for flow aggregation have been compared in Ref. 24. In this section, a method based on state-

enumeration is presented for the aggregation of flows.  

 

Figure 4. Aggregation of Flows 

Much of the required background has already been covered in the section on the analysis of departures from 

queues. It may be noted that the aggregation process can be represented by   generator nodes, and the states of the 

system can be uniquely identified by the phase of each generator. Consequently, the total number of states in the 

system is given by    
 
   , and the state of the system is identified by the  -tuple             , where        , 

       ,etc. The index for a given state follows from the following formula:   

            

 

   

          

 

   

                                   (17) 

The only transitions possible for this system are phase changes in any of the generators, and a departure from 

any of the generators. Therefore, the transition rate matrix for aggregations, denoted by   , may be constructed in a 

manner similar to the construction of the transition rate matrix of the queuing service, shown in Section III.B. The 

steady-state distribution corresponding to the transition matrix    is denoted by    , and can be found using 

techniques discussed in Section III.D. The system of equations for the c.c.d.f. is given by: 

                    
     

        
 (18) 

 

 The off-diagonal elements of    are the same as those of               
. The diagonal elements denote the 

transitional probability of remaining in the same state due to all possible departures or phase transitions. In any 

generator node, a departure from any phase always transitions to a state with that generator node in the first phase. 

This is different from a departure from a service node: a departure from a service node may not necessarily be 

accompanied by another element arriving in its first phase. Consequently, the diagonal elements of the matrix     

are given by                      , where   is obtained from Eq. (17).  

H. Solution of the Network 

The network can now be solved in an iterative manner, using the component processes described in the 

previous sections. The number of nodes in the system is  . Each node has an associated Coxian service time 



 

 

 

American Institute of Aeronautics and Astronautics 

 

 

9 

distribution. Each node may also have an external arrival process associated with it, where each arrival process can 

also be modeled by a Coxian distribution. The vector denotes the mean arrival rates at the nodes, which can be 

obtained from the reciprocal of the expected values of the Coxian distributions that represent the arrival.  

Associated with the network is a connectivity matrix  , whose      th entry denotes the flow fraction from the 

 th node of the network to the  th node of the network. It is understood that the diagonal entries of   denote the 

fraction of the flow that leaves the network at that node, and that furthermore,     
 
     ,   .  

Let    denote the matrix composed of the off-diagonal entries of  . The departure flow rate vector   can be 

obtained from the flow balance equations for the Jackson network
10

, for given external arrival flow rate vector  , as 

shown below: 

         
  
  (19) 

In this equation,   is used to denoted the identity matrix of dimension    . 

Although the flow balance equation can be used regardless of the queuing discipline at each node, Eq. (19) is 

not particularly useful, since the formulae for network metrics available in the literature are only valid for special 

cases of the queuing disciplines. Therefore, the network is solved iteratively, using exponential arrivals with rates   

as initial guesses at each node. The output of the queuing service is obtained using the methods developed in the 

previous sections, and disaggregated. These are fed back to each node based on the connectivity matrix, and the 

procedure is repeated until the change in the expected rate at output reduces to below a desired value.  

An essential procedure at every step of the network solution is to fit an appropriate Coxian distribution to the 

output of the aggregation, queuing service, and disaggregation processes. Since the p.d.f. at any stage can be 

obtained at any desired resolution, very accurate fits are possible using gradient-based methods. 

I. Solving a Network with Large Node Capacities Using Quantization 

The number of states required to solve a node with Coxian arrivals and service can be very large when the 

number of servers very high. For a Center-level model, the number of aircraft that can be served in parallel is of the 

order of hundreds. However, if a group of predetermined size is treated as one item in the queuing service, the 

number of servers required to model the queuing system can be reduced by a factor of the size of the group. For 

example, a queuing system with expected arrival flow rate  , expected service rate  , and   parallel servers, is 

considered equivalent to one with expected service rate   and       parallel servers, where   is the size of the group 

of aircraft, such that         . For this system, the arrival p.d.f. is modified to ensure that flow balance equations 

and utilization factor          remain unchanged. As a result, the arrival process for the new system is  -phase 

Erlang, with parameter  . This is equivalent to the arrival of a group of incoming items, whose inter-arrival time 

distribution is measured starting from the entry of the first item, and ending at the entry of the  th item.  

Although a rigorous mathematical basis for the quantized formulation is still under development, it has been 

observed that the expected numbers of items in the system with and without quantization are equal, and the expected 

departure flow rate from the node using quantization is       times the expected departure flow rate of the system 

without quantization. The process of quantization is depicted in Figure 5. 

 

 

 

Figure 5. Queuing Service with Quantization of Arriving Items 
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IV. Queuing Network Validation 

The results for a Center-level Coxian queuing network is compared with the Markovian queuing network and 

FACET traffic simulation data in this section. The external inter-arrival time distributions from airports in the 

Center, service time distribution for each Center, and the flow fraction of aircraft traffic from one Center to another 

are derived from FACET simulations as in Refs. 1,2, and 5. In order to keep the computations within manageable 

limits, the aircraft count in the Center is quantized in terms of 20 aircraft.  

Results are provided in this section for traffic flow between Los Angeles and New York Centers, respectively. 

The aircraft in this flow stream traverse the Los Angeles, Denver, Minneapolis, Chicago, Cleveland, and New York 

Centers. The comparison between the departure rates obtained from FACET simulation, Coxian queuing network 

and the Markovian queuing network are shown in Figure 6.  

Care should be exercised in interpreting the results presented in Figure 6 because the FACET results consist of 

traffic data for just one day, and may not be statistically representative of the actual situation. 

 
Figure 6. Departure Rates from FACET and Network Simulation 

It may be observed that the results from the Coxian queuing network compare very well with the FACET data. 

In most cases, the Coxian network appears to provide a better match between the queuing network and FACET data, 

perhaps due to the fact that the Coxian distributions more accurately represent the service time at each node. 

However, in the case of the Minneapolis Center, the Markovian model seems to better represent the traffic flow than 

the Coxian network. The causes for this difference are currently under investigation.  

Figure 7 shows some of the queuing analysis flow metrics associated with the Los Angeles Center. Shown are 

the external inter-arrival time of aircraft quantized with respect to a count of 20 into the network at the node, the 

nodal inter-arrival time (after aggregation with flows from the other nodes), service time distribution, and inter-

departure time distribution from the node. The solid line represents results from the analysis of a network of Coxian 

nodes, and the broken line shows results from the Markovian approximation. It can be observed that the solid line 

matches FACET data (depicted by the bar graphs) with greater accuracy than the broken line. This is the primary 

reason for adopting the Coxian queuing network, instead of Markovian network. It is also apparent that the resulting 

distributions for the departure process between Coxian and Markovian networks are very different, as is the 

distribution of the number of batches currently in service by the node. 

While the Coxian queuing approach provides more accurate data, it requires the integration of a large number 

of differential equations associated with the states. For the current implementation in the MATLAB® environment, 

the execution time for the Center-level Coxian network is about 60 minutes. Obtaining results comparable to these 

using Monte Carlo simulations will require significantly higher number of FACET simulation runs.  

In view of this fact, even the initial implementation represents significant computational savings over Monte-

Carlo simulations. Preliminary analysis has shown that run time can be brought down to more reasonable levels by 

adopting more efficient programming practices. For example, efforts are currently under way to implement the 

algorithms for solving the network in Java, and to optimize several aspects of the algorithms. Secondly, results can 
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be obtained several times faster if the convergence criteria are relaxed at minimal loss of accuracy. These elements 

of the algorithm are currently under analysis. 

 

 

Figure 7. Flow Properties at the Los Angeles Center 

V. Airspace-Level, Sector-Level and Latitude-Longitude Coxian Models 

Although a Coxian network solution at the Airspace-level, Sector-level and latitude-longitude-level spatial 

resolutions has not been implemented, the procedure for solving such networks is essentially the same as that 

outlined in the foregoing. In each case, the service time distributions and arrival time distributions can be obtained 

from FACET simulations. However, a fundamental difference between them is the scale of the problem. For 

instance, at Center-level resolution, the network is composed of 20 nodes representing the airspace over the 

continental United States, whereas the number of nodes is more than 1000 at the Sector level. Latitude-longitude 

spatial discretization can create far more nodes. This increases the complexity of the network solution for Coxian 

nodes, and the development of a suitable numerical technique to handle such large-scale network was not pursued in 

the present research. Techniques to incorporate higher moments are currently under investigation. 

VI. Conclusions 

The primary goal of this research was the development of high-fidelity queuing models for a network 

representation of the NAS, which also include the effects of higher moments in the service time or inter-arrival time 

distributions at the nodes. While current techniques in the literature utilize some form of approximation for the 

propagation of moment information of aggregated and disaggregated flows in a network, this paper develops a 

convergent algorithm that preserves complete moment information of the p.d.f.s associated with the departure 

processes, with accuracy equal to that of the Coxian distributions used to fit historical data for the network service 

and arrival processes. 

This paper formulated a Center-level queuing network model, which modeled the NAS as 20 nodes with 

service time distributions obtained by sampling time of flight across the 20 Centers over the continental US. Efforts 

are underway to perform similar studies for finer resolutions of the NAS, for example Sector-level or 

Latitude/Longitude grid level, as well as to validate results for the departure process from FACET-based 

simulations. 



 

 

 

American Institute of Aeronautics and Astronautics 

 

 

12 

Acknowledgments 

 This research was supported under NASA Contract No. NNA07BC55C, with Mr. Michael Bloem serving as 

the Technical Point-of-Contact. Ms. Rebecca M. Grus and Mr. Robert Lockyer served as the COTRs.  

References 

1Tandale, M. D.,  Sengupta, P., Menon, P. K., Cheng, V. H. L., Rosenberger, J., and Subbarao, K., “Queuing Network 

Models of the National Airspace System,” 8th AIAA Aviation Technology, Integration, and Operations Conference, Paper AIAA 

2008-8942, Anchorage, AK, September 2008. 
2Sengupta, P., Tandale, M. D., Kim, J., and Menon, P. K., “Queuing Models for Analyzing the Impact of Trajectory 

Uncertainties on the NAS Flow Efficiency,” 9th AIAA Aviation Technology, Integration, and Operations Conference, Paper 

AIAA 2009-6913, Hilton Head, SC, September 2009. 
3Perros, H. G., Queueing Networks with Blocking, Oxford University Press, New York, NY, 1994, pp. 15-30. 
4Saaty, T. L., Elements of Queuing Theory with Applications, Dover Publications, Inc., New York, NY, 1983.  
5Menon, P. K., Tandale, M. D., Kim, J., Sengupta, P., Kwan, J. S., Cheng, V. H. L., Subbarao, K., and Rosenberger, J., Multi-

Resolution Queuing Models for Analyzing the Impact of Trajectory Uncertainty and Precision on NGATS Flow Efficiency, 

Contractor Report No. NNA07BC55C, NASA Ames Research Center, Moffett Field, January 2010.  
6Kim, J., Tandale, M. D., and Menon, P. K., “Air Traffic Uncertainty Models for Queuing Analysis,” 9th AIAA Aviation 

Technology, Integration, and Operations Conference, Paper AIAA 2009-7053, Hilton Head, SC, September 2009. 
7Bertsimas, D., “An Exact FCFS Waiting Time Analysis for a General Class of  G/G/s  Queuing Systems,” Queuing Systems, 

Vol. 3, No. 4, December 1988, pp. 305–320. 
8Bertsimas, D., “An Analytic Approach to a General Class of  G/G/s  Queuing Systems,” Operations Research, Vol. 38, No. 

1, January-February 1990, pp. 139–155. 
9Takahashi, Y. and Takami, Y., “A Numerical Method for the Steady-State Probabilities of a G1/G/c  Queuing System in a 

General Class,” Journal of the Operations Research Society of Japan, Vol. 19, No. 2, June 1976, pp. 147–157.  
10Jackson, J. R., “Networks of Waiting Lines,” Operations Research, Vol. 5, No. 4, August 1957, pp. 518–521. 
11Daley, D. J., “Queuing Output Processes,” Advances in Applied Probability, Vol. 8, No. 2, June 1976, pp. 395–415. 
12Bitran, G. R. and Dasu, S., “A Review of Open Queuing Network Models of Manufacturing Systems,” Queuing Systems, 

Vol. 12, No. 1-2, March 1992, pp. 95–133.  
13Whitt, W., “Approximations for Departure Processes and Queues in Series,” Naval Research Logistics Quarterly, Vol. 31, 

No. 4, December 1984, pp. 499–521. 
14Kuehn, P. J., “Approximate Analysis of General Queuing Networks by Decomposition,” IEEE Transactions on 

Communications, Vol. 27, No. 1, January 1979, pp. 113–126.  
15 Long, D., Lee, D., Johnson, J., Gaier, E., and Kostiuk, P., “Modeling Air Traffic Management Technologies with a 

Queuing Network Model of the National Airspace System,” NASA Contractor Report No. NASA-CR-1999-208988, NASA 

Langley Research Center, Hampton, VA, January 1999. 
16 Whitt, W., “The Queuing Network Analyzer,” The Bell System Technical Journal, Vol. 62, Issue No. 9, November 1983, 

pp. 2779-2815. 
17Bitran, G. R. and Dasu, S., “Analysis of the  G/G/1 Queue,” Operations Research, Vol. 41, No. 1, January-February 1994, 

pp. 158–174. 
18Albin, S. L. and Kai, S.-R., “Approximation of the Departure Process of a Queue in a Network,” Naval Research Logistics 

Quarterly, Vol. 33, No. 1, February 1986, pp. 129–143. 
19Sidje, R. B., “EXPOKIT: A Software Package for Computing Matrix Exponentials,” ACM Transactions on Mathematical 

Software, Vol. 24, No. 1, March 1998, pp. 130–156. 
20Moler, C. and van Loan, C., “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” 

SIAM Review, Vol. 45, No. 1, February 2003, pp. 3–49. 
21Medhi, J., Stochastic Models in Queueing Theory, 2nd Edition, Academic Press, November 12, 2002. 
22Burke, P. J., “The Output of a Queuing System,” Operations Research, Vol. 4, No. 6, December 1956, pp. 699–704.  
23Liu, Y. C. and Perros, H. G., “A Decomposition Procedure for the Analysis of a Closed Fork/Join Queuing System,” IEEE 

Transactions on Computers, Vol. 40, No. 3, March 1991, pp. 365–370.  
24Albin, S. L., “Delays for Customers from Different Arrival Streams to a Queue,” Management Science, Vol. 32, No. 3, 

March 1986, pp. 329–340. 

 


