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Understanding the relationships between trajectory uncertainties due to aviation 

operations, precision of navigation and control, and the traffic flow efficiency are central to 

the design of next generation Air Transportation Systems.  Monte-Carlo simulations using 

air traffic simulation software packages can be used to quantify these effects. However, they 

are generally time consuming, and do not provide explicit relationships for comparing 

various technology options. On the other hand, queuing models of the air traffic system can 

rapidly demonstrate the influence of trajectory uncertainties on traffic flow efficiency, 

facilitating tradeoff studies in an effective and time-efficient manner.  A methodology for 

incorporating the trajectory uncertainty models into queuing network models of the air 

traffic at national, regional and local scales is discussed.  Usefulness of these models in 

assessing the impact of uncertainties on traffic flow efficiency is illustrated. 

I. Introduction 

ASA and the FAA are in the process of transforming the national air traffic management (ATM) system from 

airspace-based to trajectory-based operations
1
. The current air traffic management methodology is based on a 

fixed airspace structure tied to geographic locations within the National Airspace System (NAS), and can be termed 

as Fixed Airspace Operations. The Trajectory-Based Operations is a paradigm shift from the current approach and 

uses four-dimensional (4-D) trajectories as the basis for managing the ATM system. In Trajectory-based operations 

(TBO), all ATM decisions across all time horizons, are fundamentally related to 4-D trajectories. Several research 

initiatives are currently underway within NASA to help achieve this transformation from airspace-based to 

trajectory-based operations.  

 One of the research goals is the analysis of the impact of trajectory uncertainty and precision on air traffic flow 

efficiency. Models and simulations of varying fidelity are being developed to realize this goal. At one end of the 

spectrum are high-fidelity airspace simulation models such as FACET
2
 (Future ATM Concepts Evaluation Tool) 

and ACES
3
 (Airspace Concept Evaluation System) which model each aircraft together with its performance 

parameters and flight plan. Analyzing the impact of trajectory uncertainty and precision on the flow efficiency of 

future traffic concepts using these software packages involves running Monte-Carlo simulations. The disadvantages 

of using Monte Carlo simulations are that the results are non-analytic and may require enormous amounts of 

computer time. An alternative approach is to develop queuing models describing the stochastic influence of the 

factors affecting the air traffic dynamics.   

Queuing models are one of the earliest developments in the now well-established field of Operations Research. 

According to Reference 4, much of this theory is attributed to the early works of Erlang
5
 in 1917, on the problems in 

telephony. Although most of applications continued to be in telephony and surface transportation, the post WW-II 

surge in aviation has lead to several applications of the theory to air traffic
6-8

. Since then, this modeling methodology 
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has been adopted for addressing various aspects of the air transportation system by the airlines, air cargo fleet 

operators, and air traffic system designers.  

Several air traffic queuing network models have been suggested in the recent literature. For instance, Modi
9
 used 

nested queuing models to describe how the air traffic interacts with the air traffic control center. Polhemus
10

 

compared continuous autoregressive models with traditional queuing models.  Frolow and Sinnott
11

 developed the 

National Airspace System Performance Analysis Capability (NASPAC) to model the NAS. Wieland
12

 implemented 

the Detailed Policy Assessment Tool (DPAT) to analyze delays in the NAS. The Logistics Management Institute 

(LMI) developed a queuing network model of the NAS called LMINET
13

. More recently, Callaham and Wieland
14

 

studied the existence of chaotic behavior in network queuing models of the NAS. Rakas and Schonfeld
15

 used 

deterministic queues to analyze the effects of degraded capacity on the NAS. Bäuerle et al.
16

 considered the affects 

of turbulence on inbound traffic using queuing models. Wieland
17

 tested the hypothesis whether air traffic can be 

modeled using queuing systems. Cavcar and Cavcar
18

 studied the impact of aircraft performance for departing 

aircraft on air traffic delays. Shortle and Mark
19

 presented methods for reducing the complexity of airspace queuing 

networks namely, removal of low-utilization queues and clustering a group of nodes in to a single node. However, 

they used the queuing networks for efficient simulation of the NAS and not for carrying out any assessment of the 

effects of uncertainties on air traffic efficiency. 

 Although several air traffic queuing models have been described in the literature, none of them of them have 

considered the effects of trajectory uncertainties due to aviation operations and precision of navigation and control 

on the traffic flow efficiency. This paper describes the development of multiple resolution queuing models that 

allow the rapid assessment of the relationships between various trajectory uncertainties and the traffic flow 

efficiency metrics. Section II describes the multi-resolution queuing network modeling of the NAS. The various 

trajectory uncertainties modeled in this paper are briefly introduced in Section III. Further details about the 

uncertainty modeling are provided in a companion paper
20

. Section IV presents some preliminary results. Finally 

conclusions are presented in Section. VII 

II. Queuing Network Models of Air Traffic System 

The operating characteristics of queuing systems are largely determined by two statistical properties, namely, the 

probability distribution of inter-arrival times and the service times
21, 22

. These distributions can take almost any form 

in real queuing systems. However, in order to formulate a queuing model as a representation of the real system, it is 

necessary to specify the assumed form of each of these distributions. To be useful, the assumed form should be 

sufficiently realistic, so that the model provides reasonable predictions while at the same time being tractable. The 

desire to maintain analytical tractability has prompted the use of exponential distributions which simplify the 

solution process.  Queuing models are often characterized by the mean arrival rate λ and the mean service rate µ, 

and are generally represented as shown in Figure 1. 

 

Figure 1. An elementary queuing system 

Most widely used models in queuing theory are based on the birth-and-death process
21,22

. Since the mean arrival 

rate and the mean service rates can be assigned any nonnegative value, these models are said to have a Poisson input 

and exponential service times. Most queuing models differ only in their assumptions about how λ and µ change with 

the number of customers in the queue. In the simplest case, the arrivals are described by Poisson processes. The 

service times are similarly assumed to have exponential distributions.  

To get a realistic model, more general distributions of inter-arrival times can be modeled using the Erlang’s 

method of serial stages
4,21

 or the recent method of parallel stages
21

 and Coxian queues. The resulting queuing models 

have the Semi-Markovian
21,22

 properties, allowing the application of powerful theoretical results in stochastic 

systems theory. More recently, Reference 23 demonstrated how additional state variables can be introduced in the 

queuing system for transforming non-Markovian models to Markovian form.  Approaches for handling the non-

Markovian nature of the queues using Erlang and Coxian queues can generally be termed as phase-type 
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distributions
24

.  The main problem here is to find a phase-type distribution, defined as the time to absorption in a 

discrete-state continuous-time Markov chain that approximates a given distribution in an optimal manner.
25-27 

Air traffic systems are generally formulated as a queuing network. Since any aircraft entering the system will 

eventually leave the system, these are open queuing networks. The queuing network of a hypothetical air traffic 

system is illustrated in Figure 2. It is important to note that the network topology depends upon the nature of the 

traffic flow being considered. For instance, the queuing network in Figure 2 is suitable for national level traffic flow 

studies. Different network topologies will be required for regional and local level traffic flow analysis.  

The service times at each node in the network correspond to the transit time through each component of the air 

traffic system. In addition to the arrival rate and service rate distributions for each node, queuing networks require 

the definition of routing probabilities Pi,j at each branch point. Given the distribution of the traffic entering the 

system and their flight plans over a specified time interval, a traffic simulation program such as FACET can be used 

to compute the queuing network parameters.  

 

 

Figure 2. A sample queuing network representing two departure airports and four arrival airports 

   

Trajectory uncertainties and precision affect the air traffic system differently at national, regional and local 

levels, so multi-resolution queuing models must be developed. For instance, national level queuing network model 

of the Class-A airspace can be built in terms of jet-route topology shown in Figure 3. Although most of the traffic in 

the current air traffic system tends to follow the jet-routes, advanced en route procedures such as Direct-to
28

 can 

cause aircraft to deviate from these routes, introducing inaccuracies in the model. A more flexible queuing network 

model of the airspace can be constructed by partitioning the airspace using a latitude-longitude tessellation. 

Following a previous work on aggregate traffic flow modeling
29-32

, each tessellation can be assumed to be 8-

connected. Queuing network can then be defined in terms of this topology. 

Both these networks will contain several queues each involving service time distributions and routing 

probabilities. However, such detail may not be desirable in certain studies. In those cases, a more compact queuing 

model can be constructed by adopting the Air RouteTraffic Control Center level network topology advanced in 

References 33 through 36. For the sake of clarity, this network is given in Figure 4. The network is completely 

described by the connections between the 20 Air Route Traffic Control Centers. Unlike the other two topologies, the 

service time distributions in this queuing network cannot be explicitly related to the geometry of the airspace. 

In order to enable rapid analysis, an automatic numerical algorithm is developed for assembling queuing network 

models directly from traffic simulations. Preliminary results on assembling a center-level queuing network model 

from a FACET playback run are presented in Section IV. 
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Figure 3. Jet routes over the continental US 

 

 

Figure 4. Topology for a center level queuing network model of the NAS
34

 

 

III. Models for Trajectory Uncertainties 

The central objective of the research discussed in this paper is to analyze the impact of trajectory uncertainty and 

precision on the traffic flow efficiency using Queuing Theory as the modeling tool. The approach models every 

quantifiable uncertainty in the air transportation system. Details of this modeling effort are described in detail in a 

companion paper
20

. Once models capturing the effects of the trajectory uncertainties and precision are available, 

statistical methods
37

 can be used to relate them to the queuing network model parameters. The uncertainties in 

aviation operations and the precision of navigation and control can be expressed in terms of the position and velocity 
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vectors. These can then be transformed into service rate distributions in the queuing network models. The 

conceptual approach is illustrated in Figure 5. The queuing network model can then be used to analytically quantify 

the traffic flow efficiency through the air traffic system. 

 

 

Figure 5. Models for uncertainties in aviation operations and precision of navigation and control 

IV. Estimating Queuing Model Parameters from NAS Traffic Data 

The key elements necessary for formulating a queuing network model are: 

1) The inter-arrival time or arrival rate distributions at the edges of the network 

2) The service time distributions at each node 

3) Routing probabilities 

4) Number of parallel servers per node 

 

These network parameters for a center-level queuing network model in Figure 4 can be obtained by running a 

playback of the NAS flight data in FACET. The inter-arrival time, service time and routing probability can be 

collected over the playback propagation horizon. The number of parallel servers per node can be estimated by 

analyzing the maximum number of aircraft that can be simultaneously served by the airspace under consideration.  

. 

 

Figure 6. Inter-arrival time distribution fit for the Denver center (ZDV) 
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Figure 7. Service Time Distributions Fits for the Atlanta Center (ZTL) 

 

Figure 8. Routing Probabilities for Flights leaving the Chicago Center 
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Figure 6 through Figure 8 illustrate the inter-arrival time distribution, service time distribution and the transition 

probabilities observed from a FACET playback run. Distributions generally used in queuing models can be fitted to 

these observed statistics for further analysis. Traditionally, exponential distributions have been used in queuing 

model analysis as this allows the derivation of closed-form solutions. The inter-arrival time distribution at the 

Denver Center obtained from FACET is found to be exponential as shown in Figure 6. However the service time 

distributions at Atlanta were found to be stage 2 or stage 3 Erlang distributions as shown in Figure 7(b). 

Nevertheless, the service time will be assumed to be exponentially distributed as in Figure 7(a) to maintain 

mathematical tractability.  Future research will address queuing network analysis with other distributions that fit the 

service processes more closely. Note that the mathematical tractability of the queuing model is lost when non-

exponential distributions are used and closed form expressions for the queuing results described in Section V are not 

available. Future analysis of queuing networks with non-exponential distributions will resort to approximations or 

numerical techniques.   

Using the key elements identified in this section such as inter-arrival time, service time and transition 

probabilities, a Center-Level Open Jackson Queuing network with M/M/m nodes can be constructed and analyzed 

further as described in the following section. 

V. Analysis of Center-Level Open Jackson Network Model 

A Jackson Network
22

 can be characterized as a network of N  service nodes where each service node j  

)..1( Nj =  has an infinite waiting space in the queue. 

1) Customers arrive from outside the system according to a Poisson input process (Exponential Inter-Arrival 

Times) with mean arrival rate ja . 

2) Each node has jm  parallel servers with exponential service time distribution having mean service rate jµ . 

3) A customer leaving node i  is routed to an adjacent node  j  with probability jip ,  or departs the system 

with probability ∑−=
=

N

i
jij pq

1
,1 . 

The previous section described the procedure to obtain inter-arrival time distributions, service time distributions 

and transition probabilities from a FACET playback run, which are used to construct a Center Level Open Jackson 

Network Model. It is known that under steady state conditions, each node j  in the Jackson Network behaves as if it 

were an independent jmMM //   queuing system with arrival rate jλ  obeying the flow-balance equation 

 ∑+=
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N
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jiijj pa

1
,λλ  (1) 

where jjjm λµ >  will ensure that the steady-state can be attained. The matrix form of the flow-balance 

equations is as follows: 

 aλ
1)( −−= T

pI  (2) 

After calculating the arrival rate λ , each node is analyzed independently as follows. Let njP  indicate the 

probability that n  customers are present at node j . The quantities jP0  and njP  are calculated as: 
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Expected queue length at node j  (excluding customers being served) is calculated as  

 
2

0

)1(!

)/(

jj

j

jm

jjj

qj
m

P
L

ρ

ρµλ

−
=  (5) 

where )/( jjjj m µλρ = . The expected queue length at the nodes indicates the number of aircraft in that center 

which are subjected to delays due to air traffic congestion.  

Expected number of customers at the node being served and waiting, is given by 

   
j

j

qjj LL
µ

λ
+=  (6) 

Expected waiting time in queue excluding time while being served is  

 
j

qj

qj

L
W

λ
=  (7) 

The expected waiting time in the queue indicates the average delay experienced by the aircraft due to congestion.  

Expected system time including both waiting and service times is given by: 

 
j

qjj WW
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1
+=  (8) 

The expected system time indicates the total flight time through a center including the delays due to congestion. 

 The quantities calculated above can be used to quantify the traffic flow efficiency through a given node as  
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where ()Ε denotes the expected value. The traffic flow efficiency along a path in the airspace can be obtained as 
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where nj ..1= denotes all the nodes traversed along the path.  

VI. Results from the Queuing Model 

This section presents the results of the queuing model analysis for a flight route from an airport in the Los 

Angeles Center (ZLA) to an airport in the New York Center (ZNY). The flight route passes through Los Angeles 

(ZLA), Denver (ZDV), Minneapolis (ZMP), Cleveland (ZOB), Chicago (ZAU) and New York (ZNY) Centers. 

Various metrics presented in the previous section such as wait time, system time, efficiency at each node and path 

efficiency are then calculated. For the sake of brevity only some of the results are presented in the following. 

As mentioned earlier in section IV, the number of parallel servers per node can be estimated by analyzing the 

maximum number of aircraft that can be simultaneously served by the airspace under consideration. For the current 

center level queuing model, the number of parallel servers per node is obtained by summing the sector capacities of 

all sectors within a given center. However this leads to an over-estimation of the number of parallel servers 

available. This is because some of the terminal area sectors may be saturated and may be exhibiting queuing 

behavior while most of the enroute sectors are operating below capacity.  The coarse resolution of the center level 

model tends to average this effect out resulting in no observed queuing for the center considered as a whole. To 

demonstrate the kind of analysis that can be performed with this queuing model, the center capacities are reduced by 

appropriate scaling so that queuing effects are observed. Note that the results presented in the following section are 

based on these scaled values of the center capacities and do not reflect the current operating condition of the NAS. 

Future work will develop queuing models at lower resolution such as the sector level model or the latitude-longitude 

grid model where the queuing phenomenon will be captured accurately and no scaling of the capacities will be 

required.    

Figure 9 shows the variation in the total flight time including delay due to congestion with the departure rate at 

the airports. Note that all other parameters are held at their nominal values when the departure rate is varied. Red 

circles indicate nominal values. Each curve in the figure shows two distinct regions. Below a critical value of the 

external arrival rate, the system time remains constant indicating uncongested traffic. Beyond the critical value, the 
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system time increases rapidly with the external arrival rate. This is because of the delays due to traffic congestion. 

Figure 10 shows the variation of the total flight time including delays due to congestion with the service time. Note 

that the service time is the nominal flight time for a single flight without any interactions with other aircraft. In other 

words, it is the unimpeded flight time. Below a critical value of the service time, the system time is the same as the 

service time. Beyond the critical value the system time increases rapidly with increase in service time because of 

additional delays due to congestion. Figure 11 shows the variation of the total flight time with the center capacity or 

the maximum number of aircraft that can simultaneously fly within a Center. The system time decreases with the 

increase in center capacity and two distinct regions of congested and non-congested traffic are seen similar to the 

earlier figures.  

Figure 12 through Figure 14 show the variation of path efficiency with respect to the external arrival rate, service 

time and center capacity respectively. The observations are analogous to the observations for Figure 9 through 

Figure 11. Figure 15 shows the variation of the throughput or the mean flow rate at the Center with the external 

arrival rate. Figure 15 illustrates that the throughput is linearly related to the external arrival rate as indicated in 

Equation (2). 

The above results indicate that the variation in the traffic flow metrics can be obtained from the variation in the 

queuing model parameters such as the arrival rates, service times, routing probabilities and the center capacities. The 

uncertainty models that relate the trajectory uncertainties due to aviation operations, precision of navigation and 

control to the queuing model parameters are being developed. A procedure to relate trajectory uncertainty to one of 

the queuing model parameter, service time is described in Reference 20. For instance, the variation in the aircraft 

weight will cause a change in the time taken by the aircraft to climb to cruise altitude, or in terms of the queuing 

model, the service time for the climb segment. Once the model relating weight variation to the variation in the 

service time for the climb segment is available, Figure 10 and Figure 13 can be used to relate the weight variation to 

the total flight time through the system and the system efficiency. As other uncertainty models and queuing network 

models are developed, the effect of trajectory uncertainties due to aviation operations, precision of navigation and 

control on the traffic flow efficiency can be studied. 

 

 

Figure 9. Variation of system time with expected external arrival rate (Aircraft departure rate at airports) 
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Figure 10. Variation of the system time with expected service time 

 

Figure 11. Variation of the system time with the center capacity 
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Figure 12. Variation of path efficiency with external arrival rate (Aircraft departure rate at airports) 

 

Figure 13. Variation of the path efficiency with expected service time  
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Figure 14.Variation of path efficiency with the center capacity 

 

 

Figure 15. Variation of throughput with expected external arrival rate (Aircraft departure date at airports) 
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VII. Conclusions and Future Work 

This paper presented a methodology to analyze the impact of trajectory uncertainty and precision on air traffic 

flow efficiency using queuing theory. The central idea is to model every quantifiable uncertainty in aviation 

operations and cast it into queuing model parameters such as arrival rate distributions, queuing time distributions, 

transition probabilities and number of servers per node. Queuing network analysis can then help establish the 

relationships between the system parameters and the metrics indicating traffic flow efficiency. This approach 

proposes the construction of queuing models of the national airspace system at various spatial and temporal 

resolutions to perform the analysis. As an example, the present research developed a Center-level open Jackson 

queuing network model of the NAS with M/M/m nodes and discussed some of the traffic flow efficiency metrics. 

The present work assumed exponential distributions for the inter-arrival and service times for mathematical 

tractability. Future work will address the use of other distributions that more closely match the observed inter-arrival 

and service times. Also, most of the congestion in the airspace occurs at airports or in the terminal areas while en-

route traffic is mostly uncongested. Future research will include models of the airports and the terminal areas to 

more accurately capture these phenomena.      
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