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MODELING AND CONTROL OF INTERFEROMETRIC
FORMATIONS IN THE VICINITY OF THE COLLINEAR

LIBRATION POINTS

Prasenjit Sengupta∗ and Srinivas R. Vadali†

The modeling and control of a Fizeau-type interferometer in the el-
liptic, restricted three-body problem of the Sun and Earth-Moon
Barycenter system, is the subject of this paper. The interferometer
is in a quasi-periodic (Lissajous) orbit about the trans-terrestrial li-
bration point. Control laws are derived for effective station-keeping,
inertial and local pointing, and slewing maneuvers, as well as atti-
tude maintenance of the spacecraft in the formation. These control
laws are derived from candidate Lyapunov functions, each of which
is proven to be globally and asymptotically stable. The approach in
this paper couples the translational and attitude kinematics of the
spacecraft, thereby leading to a more accurate representation of the
system. Simulations are provided for various types of maneuvers.

INTRODUCTION

The Circular Restricted Three-Body Problem (CR3BP), is a special case of the Elliptic
Restricted Three-Body Problem (ER3BP), both of which have historically been topics of
great interest. This is due to the fact that both are important steps to the design analysis of
many real-world astrodynamical problems of today, such as interplanetary trajectories and
deep-space missions. The CR3BP studies the motion of a small mass, such as a spacecraft
in a system comprising two massive primaries, such as the Earth and Moon, or the Sun and
Jupiter, that mutually revolve in circular orbits about their center of mass. The ER3BP
includes eccentricity effects of the primaries’ motion, by assuming that the smaller primary
rotates about the larger primary in two-body Keplerian motion. While the CR3BP has
one integral of motion, the time-varying nature of the Hamiltonian of the ER3BP renders
this missing in the latter case, and many phenomena such as the surfaces of zero velocity,
etc. are no longer observed. However, the ER3BP more closely resembles physical realities,
since eccentricities in the planetary system are of levels that cannot be neglected.
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The CR3BP/ER3BP admit five equilibrium points in the rotating frame, known as La-
grangian/Libration points. Of these, three lie on the line passing through the primaries.
These points, denoted by L3 (on the outside of the larger primary), L1 (between the pri-
maries), and L2 (on the outside of the smaller primary), have been viewed with great interest
since the latter half of the last century. For the Sun-Earth-Moon (SEM) system, the points
L1 and L2 are of greater interest than L3 due to the latter’s proximity to the Sun. Though
these equilibria are unstable, the system allows for the existense of periodic (halo) and
quasi-periodic (Lissajous) trajectories about them. These orbits are also unstable; however
they prove useful in the form of reference trajectories for formations. Various missions have
been proposed to successfully utilize halo/Lissajous orbits, such as the ISEE-3/ICE, SI, and
TPF1–3 among others. A thorough survey of the dynamics associated with these points is
presented in Ref. 4.

There exist many approaches to obtain periodic and quasi-periodic trajectories about
the libration points. Perturbation techniques have been used with great efficacy on systems
where the gravitational potential has been expanded to second-, third- and fourth-order
terms using Legendre polynomials.5–7 These methods provide analytical expressions for
trajectories that account for eccentricity and lunar/solar perturbations, and provide an
excellent starting point for the generation of numerically accurate trajectories. An algorithm
developed by Howell and Pernicka8 is used in a modified manner, that takes into account the
time-variant nature of the ER3BP, to generate a Lissajous trajectory of required dimensions
about the L2 point of the SEM system.

Stationkeeping of a satellite in a libration point trajectory depends on an accurate
representation of the nominal trajectory. Effective algorithms have been developed that
reduce the burden of storage of points generated via the numerical approach, and instead
use the state transition matrix for correction calculations.9 The algorithm in this reference
uses impulsive thrusts at different intervals for orbit correction. In this paper, for the sake
of simplicity, quintic interpolation is used to generate nominal trajectories. Continuous
control is used to stabilize the satellite about this trajectory.

The interferometer is modeled as a formation of rigid satellites about the libration point.
This results in the study of both the translational equation of motion as well as attitude
kinematics, and coupling effects need to be studied. A useful survey of existing method-
ologies for stationkeeping control of formations is presented in Ref. 10. Stationkeeping
methodologies have also been developed for formations in halo orbits about the L2 point
of the SEM system, in Ref. 11. Folta12 analyzes the problem of interferometric satellite
stationkeeping in the vicinity of libration points, under a variety of maneuvers. Ren and
Beard13 derive feedback control laws for the motion of virtual structures in space.

This paper begins by addressing the problem of attitude kinematics as well as trans-
lational motion by first considering a rigid satellite in the ER3BP, with position-attitude
coupling, introduced by the gravity-gradient torque. Reference 14 analyzes the attitude
kinematics of a rigid satellite, but is limited to the planar case and single-axis rotation. In
this case, however, an interferometric formation in a large Lissajous orbit requires a more
generalized approach. Next, a Lissajous trajectory is determined numerically, followed by
the modeling of the distributed Fizeau interferometer. Control laws from a Lyapunov ap-
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proach15 are developed for a variety of maneuvers and for station-keeping, as well as attitude
control, that account for gravity-gradient torque as well as torques arising due to solar radi-
ation pressure (SRP), which affect the system to a greater degree than the gravity-gradient
torque. The advantage of formation rotation is demonstrated for different types of maneu-
vers. Numerical examples are used to demonstrate the the dynamics and control of the
interferometer.

TRANSLATION AND ATTITUDE KINEMATICS OF A SATELLITE IN
THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM

C.M.
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Figure 1. Rigid Satellite in the Elliptic Restricted Three-Body Problem

Consider the elliptic restricted three body problem, with a rotating frame at the center
of mass of the two primaries. This frame, denoted by E , has as basis vectors, ei, i = 1 . . . 3,
and rotates with angular velocity θ̇e3, with respect to the inertial frame, N . Also consider
the body frame of the rigid body, denoted by B, which coincides with the principal axes of
the satellite, and has basis vectors bi, i = 1 . . . 3. The vector b1 is assumed to be in the
direction of the axis of the mirror array. Let the orientation of B with respect to E be given
by the direction cosine matrix C. The matrix C can be characterized by any suitable set
of parameters, for e.g., Euler angles. The use of Euler parameters is preferred, due to the
lack of singularities associated with an Euler angle description.

For the purpose of halo/Lissajous orbit analysis, the origin of the rotating frame is
shifted to the Lagrangian point under consideration (in this case, L2). The Lagrangian
point is placed at a distance γLR12 on the right of the second primary m2, where R12 is the
time-varying distance between the two primaries, given by R12 = a(1−e cos E). The rate of
rotation of the frame, θ̇ is not a constant, and is given by θ̇ =

√
G(m1 + m2)a(1− e2)/R2

12.

Translation Equations of Motion of the Satellite

The equations of motion for the translation of a rigid satellite are obtained directly from
a Lagrangian formulation for the system by first obtaining the expressions for potential
energy arising due to the gravitational fields of the two primaries, and the kinetic energy
arises due to the translation as well as rotation16 of the satellite. The equations of motion
in ER3BP have been derived in Ref. 4. In this paper, rigid body effects are also added
to the expression for potential energy. The following normalization is performed: 1) total
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mass of the primaries is 1 (the mass of the smaller primary is thus µ), 2) length is scaled
by semimajor axis a, and 3) time period of rotation is 2π. Furthermore, the inertia tensor
of the satellite, denoted by IK (in the K frame), is normalized with the quantity ma2,
where m is the mass of the spacecraft, to yield IK . Without loss of generality, the inertia
tensor in the body frame, IB, is denoted by I. Let ri denote the normalized position vector
of the satellite center of mass with respect to each primary, and let Ri = Cri denote the
transformation of this vector into the body frame. It can thus be shown that the normalized
potential energy is given by:

V = − 1
ma2n2

[∫
B

Gm1

|R1 + %|
dm +

∫
B

Gm2

|R2 + %|
dm

]
= −

(
1− µ

r1
+
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r2

)
− 1
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(
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r3
2

)
trI +

3
2
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µ

r5
2

R2
T IR2

)
(1)

It is also shown in Ref. 4 that the velocity of the satellite mass center is of the following
form:

ṙ = [ẋ + (1− µ + γL)ρ̇− (1 + ν)y] e1

+ [ẏ + (1 + ν)x + (1 + ν)(1− µ + γL)(1 + ρ)] e2 (2)
+ że3

where, the quantities ρ and ν correspond to the normalized two-body distance and true
anomaly arising from the Keplerian rotation of the Earth-Moon barycenter about the Sun:

1 + ν =
θ̇

n
=

(
1− e2

) 1
2

(1− e cos E)2
(3)

1 + ρ =
R

a
= 1− e cos E (4)

The normalized translational kinetic energy is given by the expression Ttrans = 1
2 ṙ · ṙ.

Let the inertial angular velocity of the frame B be ω = ω1b1 + ω2b2 + ω3b3. Since B
coincides with the principal axes of the the rigid body, this is also the angular velocity of
the body expressed in its own frame. Furthermore, the inertia tensor I in this frame, is
diagonal. Let the diagonal elements of this inertial tensor be Ii, i = 1 . . . 3. The rotational
kinetic energy is thus given by Trot = 1

2ω · (IBω).

From the expressions for potential and kinetic energy, the Lagrangian of the system is
L = Ttrans + Trot − V. The translational equations of motion are thus:

ẍ− 2(1 + ν)ẏ + (1 + γL)ρ̈− ν̇y − (1 + ν)2 [(1 + γL)(1 + ρ) + x] =
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T IR1
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(5a)

ÿ + 2(1 + ν) [(1 + γL)ρ̇ + ẋ] + ν̇ [(1 + γL)(1 + ρ) + x]− (1 + ν)2y =
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where, ci is the ith column of the matrix C.

Of interest is the weak coupling between attitude and translation introduced by the
normalized inertia tensor I. To estimate the relative magnitude of this inertial coupling,
assume the satellite is modeled as a disc of radius R. Then the contribution of rigid body
effects is O(R2/a2). In the Sun-Earth system, a ≈ 1.5 × 108km, and γL ≈ 0.01. Even if
the satellite has radius 0.15km, and is placed near L2, then r1 = O(1) and r2 = O(γL).
The relative contribution of the inertial terms in Eq. (5) is approximately 1 × 10−18. To
compare with eccentricity effects, consider the estimate: (1 + γL)ρ̈ = O(e). For the Sun-
Earth system, e = 0.016. Thus, for the present analysis, the terms involving moments of
inertia may be dropped, and Eq. (5) reduce to the form:4

ẍ = f(x, ẋ) = {f1(x, ẋ) f2(x, ẋ) f3(x, ẋ)}T (6)
f1(x, ẋ) = 2(1 + ν)ẏ − (1 + γL)ρ̈ + ν̇y + (1 + ν)2 [(1 + γL)(1 + ρ) + x]
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r3
1
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r3
2

Attitude Kinematics of the Satellite

Though the attitude of the satellite has been shown have negligible effects on the transla-
tional motion, the converse is not necessarily true, and expresses itself through the gravity-
gradient torque. The nondimensional gravity-gradient torque induced by both primaries
can be shown to be of the following form:

τg =
1

n2trI

∫
B

%× dfg = 3
(1− µ)

r5
1

r̃1IEr1 + 3
µ

r5
2

r̃2IEr2 (7)

where r̃i denotes the cross-product tensor associated with ri, and the inertia tensor is
normalized with respect to its trace.
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Figure 2. Rigid Satellite and the ith Momentum Wheel

To obtain the expression for force and torque arising due to SRP, it is assumed without
loss of generality that the direction b1 corresponds to the normal vector of the SRP area.
Thus, the SRP force is shown to have the following form:17

fSRP = −PSA

[
2ρS (b1 · s)2 b1 + ρA (b1 · s) s + ρD (b1 · s)

(
s +

2
3
b1

)]
(8)

In the above expression, PS is the solar radiation pressure, which is assumed constant and
equal to PS = 4.644 × 10−6N/m2. The surface area of the satellite affected by SRP is
denoted by A. The coefficients ρS , ρA and ρD, denote respectively, the specular reflection,
the absorption, the diffusion, and have their sum equal to 1. These quantities are determined
by the physical characteristics of the satellite. The vector s denotes the direction of rays
from the Sun. In the frame E , this vector is a constant with s = −e1. Consequently, to
obtain this vector in frame B, a transformation using the corresponding direction cosine
matrix must be performed. The SRP results in a torque on the satellite, if the center of
pressure does not coincide with the center of mass. If the position of the center of pressure
with respect to the center of mass in B is denoted by rcp, then the SRP torque is evaluated
as τs = rcp × fSRP/(n2trI). Together, the gravity-gradient and SRP torques comprise the
disturbance torque, denoted by τd.

An arbitrarily-shaped spacecraft with momentum wheels is considered.18 Let the satel-
lite have m momentum wheels, and consider the ith momentum wheel, denoted by Wi,
whose center of mass is at pi = pi1b1 + pi2b2 + pi2b3 (dimensional quantity) with respect
to the center of mass of the spacecraft. This wheel has axis of rotation in the direction
wi (in the B frame), and rotates with normalized angular velocity ΩB

i = Ωiwi, relative to
B. If Qi is the direction cosine matrix of the wheel-centered frame, denoted by Wi, then
wi = Qi11b1 +Qi12b2 +Qi13b3. The inertia tensor in Wi, which is also the principal inertia
tensor, is expressed as

JWi =

 Jia 0 0
0 Jit 0
0 0 Jit


where Jia is the moment of inertia in the axial direction and Jit , in the transverse directions
(each normalized by trIB). Let the relative wheel momenta be defined as hi = JiaΩi and
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the motor torque acting on the ith wheel, as ui. It can be shown18 that the modified Euler
equations for the attitude kinematics of the the spacecraft take the following form:(

I−QJaQ
T
)

ω̇ = −ω̃
(
Iω + h

)
+ τd − u (9a)

ḣ = u−QJaQ
T
ω̇ (9b)

where, h and u are the generalized wheel moment vector and generalized motor torque
vector respectively, with h = Qh and u = Qu. Furthermore,

I = I +
m∑
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mi

trIB

 p2
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+ p2
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+
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QT
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[
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21
· · · qT
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]
h = {h1 · · ·hm}T

u = {u1 · · ·um}T

Ja =

 J1a · · · 0
...

. . .
...

0 · · · Jma


and qi1 is the first row of Qi.

The attitude of the satellite is expressed through the use of Euler parameters (EPs).
Let β = {β0 β1 β2 β3}T be the EPs characterizing the orientation of B with respect
to N . Then, the rate of change of β is related to the non-dimensionalized inertial angular
velocity, ω, by the following:

β̇ =
1
2
B(β)

{
0
ω

}
(11)

B(β) =


β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0


The EPs corresponding to the rotating frame can be shown to be:

βE0 = cos
θ

2
, βE1 = βE2 = 0, βE3 = sin

θ

2
(12)

Thus, if βB/E is the EP set characterizing the orientation of B with respect to E (i.e.,
orientation of the spacecraft in the rotating frame), then

βB/E =


βB0 βB1 βB2 βB3

βB1 −βB0 −βB3 βB2

βB2 βB3 −βB0 −βB1

βB3 −βB2 βB1 −βB0

βE (13)
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GENERATING NOMINAL LISSAJOUS ORBITS

The Lissajous orbit that is used as a reference orbit is obtained numerically, by first using
an analytical solution with the desired parameters, from Ref. 7, as initial guesses to obtain
target points. A series of two-point boundary value problems using the shooting method are
solved to first render the trajectory continuous in position, followed by velocity discrepancy
reduction at the target points, as shown in Ref. 8. The second step requires forward and
backward integration of the system of equations, and the state transition matrix of the
ER3BP differs to some extent from that of the CR3BP. Thus the algorithm is modified
slightly, in the propagation of the state transition matrix Φ(t, t0) using the Jacobian of the
system, F that obtained through the linearization of Eq. (6):

Φ̇(t, t0) = F(t)Φ(t, t0) (14)

F =
[

O3×3 13×3

A Ω

]
(15)

Ω = 2(1 + ν)

 0 1 0
−1 0 0

0 0 0


The matrix A, has as its elements the derivatives of f(x) in Eq. (6), with respect to x, y,
and z, respectively, and is not symmetric due to eccentricity effects.

Using the method outlined above, a Lissajous trajectory with y and z amplitudes ap-
proximately 300,000km is designed, using 40 segments for 6 years. The resulting Lissajous
orbit is shown in Figure 3. This orbit is found to have an out-of-plane period of approxi-
mately 6 months.

INTERFEROMETER MODELING

The interferometer considered here is designed keeping one satellite on the Lissajous
orbit with the purpose of collection and combining the data, and using several satellites
placed in a formation in the neighborhood of the primary satellite, that act as receptors.
The primary satellite that is on the Lissajous orbit will be referred to as the ‘focal’ satellite,
and the other satellites will be referred to as the ‘mirror’ satellites.

The interferometer has associated with it, a line-of-site (LOS) vector, that points in
the direction of interest. This direction may be fixed inertially, or rotate at a given rate,
depending on the mission requirements. The focal and mirror satellites are placed relative
to each other in a local frame, D, with origin on the Lissajous orbit, and has basis vectors
di, i = 1 . . . 3. The unit vector d1 lies along the LOS, and d2 is selected arbitrarily, the
vector d3 thus is fixed once a choice for d2 is made. The interferometer frame D, has an
orientation with respect to the rotating frame E , that is characterized by the EP set βD/E .
An example of such a formation is shown in Figure 4.

The case in consideration assumes the mirror satellites are distributed over the surface
of a sphere. However, modifications in the modeling can easily be made for aspherical
formations by using parametric representations of the surfaces. Each satellite has associated
with its position, a ring radius and a ring phase angle. The ring radius is determined by
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Figure 3. Numerically Generated Lissajous Orbit

the distance of the ring from the focal satellite (since it is constrained to lie on the sphere).
Thus, the position of the ith mirror satellite in the D frame is given by the vector

rDi = did1 + ri cos(α0i + α̇t)d2 + ri sin(α0i + α̇t)d3 (16)

where di is the distance of the ring of ith satellite from the origin, and ri and α0i are
respectively the ring radius and phase angle associated with the ith satellite. The rotation
of the formation about the LOS vector is introduced via the term α̇.

The interferometer has two operational modes of interest:

1. Inertial pointing in this case the line-of-sight (LOS) vector of the interferometer is
fixed inertially (e.g. observation of a galaxy or a star), and the formation rotates
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Figure 4. Sample Formation for Interferometer

with respect to the rotating frame and the line joining the Sun to the Earth-Moon
barycenter. A feedback law uses continuous control for station-keeping. Furthermore,
the treatment of the satellite as a rigid body also yields the problem of individual
pointing of each satellite. This is handled by the use of a Lyapunov-based feedback
scheme, that orients each satellite in the desired direction. In this case, attitude control
has to take into account gravitational effects (apart from rigid body gyroscopic effects).
Attitude control is performed by the use of momentum wheels on the satellite.

2. LVLH pointing in this case, the LOS is fixed in the rotating frame (e.g. solar or
terrestrial observation. The attitude control has to account for gravitational as well
as eccentricity effects, since the rotation of the frame is not constant in the ER3BP.

Slewing maneuvers are easily performed due to the feedback nature of the control laws
derived for control: the formation has to re-stabilize itself about a new LOS vector, and the
same control law can be used for formation maintenance as well as formation slewing.

CONTROL REQUIREMENT HOMOGENIZATION VIA FORMATION
ROTATION

The concept of formation rotation as a means of fuel consumption homogenization has
been utilized very successfully for formations in orbit around the Earth.19 Vadali et al.11

have also applied fuel balancing to circular formations in halo orbits. It is shown that for
some cases, formation rotation actually reduces the total amount of control required for the
stationkeeping in a mission. To gain insight into the problem, it is assumed in this paper
that the focal satellite lies on the nominal trajectory that exactly satisfies Eq. (6), and
therefore requires negligible control for station keeping. Let the state vector of the focal
satellite be xf . The position of a mirror satellite, relative to that of the focus, is given by
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(x, y, z). Thus, the position of the mirror satellite in the coordinate frame at L2, is given
by (xf + x, yf + y, zf + z). A first approximation for the control required to maintain the
mirror satellite along this trajectory is obtained by replacing this trajectory into a linearized
form of Eq. (6), given by:

ẍ− 2ẏ − (1 + 2BL)x = 0 (17a)
ÿ + 2ẋ + (BL − 1)y = 0 (17b)
z̈ + BLz = 0 (17c)

where BL is a coefficient arising from the Legendre polynomial approximation of the grav-
itational potential, taking the following form:

BL =
(1− µ)

(1 + γL)3
+

µ

γ3
L

(18)

Therefore,

ux = ẍ− 2ẏ − (1 + 2BL)x (19a)
uy = ÿ + 2ẋ + (BL − 1)y (19b)
uz = z̈ + BLz (19c)

If it is desired that the mirror satellite travel in a circle of radius R relative to the focal
satellite, then 

x
y
z

 =

 1 0 0
0 cos α − sinα
0 sinα cos α


0
R
0

 (20)

The optimal rate of rotation of this formation is sought, if the plane of rotation is also
rotated about e3. For example, if the formation is required to look in a specific inertial
direction, the rate of rotation about e3 is −1. To this end, let the current angle of the
formation plane with respect to the the Y -Z plane be β. Then the relative position of the
mirror satellite evolves as:

x
y
z

 =

 cos β sinβ 0
− sinβ cos β 0

0 0 1

 1 0 0
0 cos α − sinα
0 sinα cos α


0
R
0

 (21)

or,

x = R cos α sinβ

y = R cos α cos β (22a)
z = R sinα

ẋ = −Rα̇ sinα sinβ + Rβ̇ cos α cos β

ẏ = −Rα̇ sinα cos β −Rβ̇ cos α sinβ (22b)
ż = Rα̇ cos α

ẍ = −R(α̇2 + β̇2) cos α sinβ − 2Rα̇β̇ sinα cos β

ÿ = −R(α̇2 + β̇2) cos α cos β + 2Rα̇β̇ sinα sinβ (22c)
z̈ = −Rα̇2 sinα

11



where, α = α0+α̇t and β = β̇t. For a given rate of planar rotation, it can be shown that the
average control requirement for the rotation of an infinite number of satellites in a circle, is
of the following form:

uavg =
1
2π

∫ 2π

0

∫ 2π

0
(u2

x + u2
y + u2

z) dt dα0

= Aα̇4 + Bα̇2 + C (23)

with,

A = 2πR2, B = πR2

[
6β̇(β̇ − 2)−BL + 6− 3BL

sin 4πβ̇

4πβ̇

]
(24)

The value of C is lengthy, and is not required in the analysis here. The minimum control
requirement is obtained when:

α̇ = 0, ±
(
− B

2A

) 1
2

The value α̇ = 0 corresponds to a local maxima, and the other two values correspond to
minima. Thus, the characteristics of the following expression are of interest:

α̇opt =
1
2

[
BL − 6 + 3BL

sin 4πβ̇

4πβ̇
− 6β̇(β̇ − 2)

] 1
2

(25)

In the limit β̇ → 0, Eq. (25) reduces to‡:

α̇opt = ±1
2

(4BL − 6)
1
2 (26)

It should be noted that an optimal value of α̇ will only exist, when

6β̇(β̇ − 2)−BL + 6− 3BL
sin 4πβ̇

4πβ̇
< 0 (27)

Figure 5(i) shows the optimal rate of formation rotation, for varying β̇. In the cases where
B > 0, the only real root for the optimal α̇ is zero. This occurs, for example, in the case of
inertial pointing, with β̇ = −1.

‡A similar analysis accounting for first-order eccentricity terms leads to the use of the following expres-
sions:

ẍ− (2 + 4e cos t)ẏ − [(1 + 2BL) + 2e(2 + 3BL) cos t] x + 2e sin ty = 0

ÿ + (2 + 4e cos t)ẋ− [(1−BL) + e(4− 3BL) cos t] y − 2e sin tx = 0

z̈ + (1 + 3e cos t)BLz = 0

Yielding,

α̇opt =
1

2

ˆ
4BL − 6− 8e2˜ 1

2

12



Using sinx ≈ x − x3/3!, Eq. (27) yields a quadratic inequality, which can be solved to
obtain the range in which B ≤ 0. The limits of this range of values of β̇ can be obtained
by solving for the roots of the following equation:

(8BLπ2 + 6)β̇2 − 12β̇ − (4BL − 6) = 0 (28)

This yields β̇min ≈ −0.16, and β̇max ≈ 0.20.
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Figure 5. Formation Rotation

If the formation does not rotate about e3, then numerical simulations show that the
optimal rate of formation rotation agrees with the rate predicted in Eq. (26). This is shown
for a Lissajous trajectory with Ay = Az = 300, 000km, in Figure 5(ii). The dashed lines
indicate the control requirement for individual satellites placed at phase angles 0◦, 90◦, 180◦

and 270◦. The solid line indicates the average control requirement if all four satellites are
rotated, for varying α̇. In this case, the predicted value of α̇opt is 1.56, whereas the value
obtained from numerical simulations is 1.59. In dimensional terms, this is approximately
once every 9 months. Intuitively, it would be expected that an optimal value for rotating
the formation would be approximately 6 months, to match with the Lissajous orbit period.
However, from Figure 5(i), it is observed that α̇opt = 2 is not an optimal value for any value
of β̇. Thus, no relation to the Lissajous orbit period is evident.

In the analysis in this section, the equations of motion have been linearized with respect
to the L2 point. This is a possible explanation for the difference between analytical and
numerically obtained optimal rates of rotation. More accurate results can be obtained if the
equations of the mirror satellite are linearized with respect to the focal satellite.20 However,
this leads to a linear equation with periodic coefficients that depend on the states of the
focal satellite. Either an approximate trajectory for the Lissajous orbit for the focal satellite
may be used, or the numerical values for its states can be used to evaluate te optimal rate
of formation rotation. In fact, the latter defeats the purpose of the analysis in this section.
To reduce the complexity of calculations, this paper uses linearized motion about the L2

point only.
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Fuel balancing via formation rotation ceases to be of use when either of the following
cases:

1. Faster rotation rates - depending on mission requirements, one rotation every 9 months
may be too slow.

2. Rotation of the formation about the axis normal to the Sun-Earth plane - in this case,
as is shown in Figure 5(i), the formation is best left stationary.

INTERFEROMETER FORMATION-KEEPING

While the focal satellite requires very little control to remain on the Lissajous trajectory,
the mirror satellites will require control, since their trajectories are not natural solutions to
Eq. (6). In this section, the control requirement for formation keeping for various configu-
rations are explored. The numerical method used to obtain Lissajous trajectories generates
target points roughly 10 days apart. A quintic polynomial is used a spline, to maintain
continuity at the position, velocity, and acceleration levels.

Let the current position of the ith satellite be ri. A Lyapunov function for each satellite,
Vi : R6 7→ R, is defined as follows:

Vi =
1
2
(ri − rdesi

)T (ri − rdesi
) +

1
2
(ṙi − ṙdesi

)TKi(ṙi − ṙdesi
) (29)

where Ki ∈ R3×3 is positive definite. The function rdesi
is a piecewise continuous represen-

tation of the reference trajectory, of the following form:

rdesi = rEi + rqs (30)
rqs = pj0 + pj1t + pj2t

2 + pj3t
3 + pj4t

4 + pj5t
5 ∀t ∈ [tj0 , tjf

]

where rEi is the position of the ith satellite in the E frame. It is immediately obvious that
Vi is positive definite everywhere except on the desired trajectory. By defining Ki ∈ R3×3,
it is also easy to show that a control, ui ∈ U ⊂ R3 renders V̇i negative definite everywhere
except on the desired trajectory:

ui = r̈desi
− f(ri, ṙi)− Li(ṙi − ṙdesi

)− Li(ri − rdesi
) (31)

where Li = K−1
i Ki and Li = K−1

i . Thus ui is a globally, asymptotic stabilizing controller.

Formation-Keeping for LVLH Pointing

For the interferometer to have LVLH pointing, D must have a constant orientation with
respect to E , i.e., the desired EP set, βD/Edes

is given and constant. Using Eq. (16), the
position of the ith mirror in the basis corresponding to E is thus:

rEi = CT
D/Edes

rDi (32a)

Consequently, ṙEi = CT
D/Edes

ṙDi (32b)

r̈Ei = CT
D/Edes

r̈Di (32c)
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since the direction cosine matrix CD/Edes
≡ CD/Edes

(βD/Edes
) is constant. The time deriva-

tives of rDi are local in the D frame; therefore:

ṙDi = −riα̇ sin(α0i + α̇t)d2 + riα̇ cos(α0i + α̇t)d3 (33a)
r̈Di = −riα̇

2 cos(α0i + α̇t)d2 − riα̇
2 sin(α0i + α̇t)d3 (33b)

Equations (32) and (33) are used with Eq. (30) to generate a control law from Eq. (31).

Formation-Keeping for Inertial Pointing

If a constant inertial pointing is desired, then the EP set, βD that orients D with N is
constant, i.e., βD/Edes

is no longer constant. It follows that:

ṙEi = CT
D/Edes

(ṙDi + ω̃D/Edes
rDi) (34a)

r̈Ei = CT
D/Edes

(r̈Di + ˙̃ωD/Edes
rDi + 2ω̃D/Edes

ṙDi + ω̃D/Edes
ω̃D/Edes

rDi) (34b)

Since the interferometer is fixed inertially, the inertial angular velocity ωD = 0. Further-
more, the desired angular velocity of the frame is ωEdes

= (1 + ν)e3, and it follows that the
relative angular velocity between D and E , expressed in D, is:

ωD/Edes
= −(1 + ν)cD/Edes3 (35a)

Consequently, ω̇D/Edes
=

[
−ν̇1+ (1 + ν)ω̃D/E

]
cD/Edes3 (35b)

where cD/Edes3 is the third column of CD/Edes
. Since βDdes

is fixed and βE = {cos θ/2 0 0
sin θ/2}T , βD/Edes

is given by an expression similar to Eq. (13).

ATTITUDE CONTROL FOR THE MIRROR SATELLITES

Attention is now focused on the problem of attitude control. If the interferometry assem-
bly is small in comparison with the astronomical distances, it is sufficient to demonstrate
the attitude control on one satellite (viz., the focal satellite), since they are all required
to have the same orientation, and the disturbance torques acting on all satellites are of
the same order. Control laws to maintain orientation of the general rigid spacecraft with
an arbitrary number of momentum wheels, in the desired direction are presented in this
section.

Attitude Control for LVLH Pointing

The desired attitude of the spacecraft is assumed to be the same as that of the inter-
ferometer frame. For LVLH pointing, therefore, βB/Edes

is given and constant. Let βB/E

characterize the current orientation of the satellite frame B with respect to the rotating
frame E . The error EP set is thus defined as the relative orientation between the current
and desired EPs, i.e.,

∆β =


βB/Edes0

βB/Edes1
βB/Edes2

βB/Edes3

−βB/Edes1
βB/Edes0

βB/Edes3
−βB/Edes2

−βB/Edes2
−βB/Edes3

βB/Edes0
βB/Edes1

−βB/Edes3
βB/Edes2

−βB/Edes1
βB/Edes0

βB/E (36)
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The matrix in the above expression is constant. Therefore, ∆β̇ = [·] β̇D/E . It is also desired
that the satellite be brought to rest with respect to the rotating frame, at equilibrium;
therefore, ωB/E = ωB −CB/EωE → 0.

Let z =
{
∆βT ωT

B/E

}T
be a state vector such that z ∈ S3×Z where S3 is the 3-sphere,

and Z ⊂ R3; and u ∈ U where U ⊂ R3. Then, the Lyapunov function, V1 : S3 × Z 7→ R is
defined as

V1(z) = (1−∆β0)2 + ∆̃β
T
∆̃β +

1
2
ωT

B/EK1ωB/E (37)

where K1 ∈ R3×3 is positive definite, and ∆̃β denotes the reduced EP set, ∆βi, i = 1 . . . 3.
When the desired orientation is achieved, ∆β0 = 1 and ∆̃β = ωB/E = 0, so it is evident
that V1 is positive definite every except at equilibrium. Taking the time derivative of V1, it
can be shown that

V̇1 = ωT
B/E

[
∆̃β + K1ω̇B/E

]
(38)

To make V̇1 negative definite, Eqs. (9) are substituted in Eq. (38) to obtain the following
control law:

u = −ω̃
(
Iω + h

)
+ τd +

(
I−QJaQ

T
)(

L1ωB/E + L2∆̃β − ˙̂ω
)

(39)

˙̂ω = CB/E


0
0
ν̇

− ω̃B/E


0
0

1 + ν


where, L2 ∈ R3×3 is also positive definite, L1 = K−1

1 K2, and L2 = K−1
1 . Upon substitution

of Eq. (39) in Eqs. (38),

V̇1 = −ωT
B/EK2ωB/E (40)

Furthermore, substitution of Eq. (39) in Eqs. (38) yields the following system of equations:

ω̇B/E + L1ωB/E + L2∆̃β = 0 (41)

If ωB/E = 0, then ω̇B/E = 0 and it follows from the above equation that ∆̃β = 0, or
∆β = {1 0 0 0}T . Thus from Eq. (40) and Eq. (41), V̇1 is zero at the equilibrium only,
proving that the control defined in Eq. (39) asymptotically stabilizes the system about the
desired equilibrium.

Attitude Control for Inertial Pointing

If it is desired to keep the spacecraft fixed in a desired direction in the inertial frame,
then βBdes

is given and constant. From Eq. (13),

∆β =


βB0 βB1 βB2 βB3

βB1 −βB0 −βB3 βB2

βB2 βB3 −βB0 −βB1

βB3 −βB2 βB1 −βB0

βBdes
(42)
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Furthermore, it is desired that ω → 0.

The Lyapunov function is of a similar structure as in the previous case. Let z ={
∆βT ωT

}T be a state vector such that z ∈ S3 × Z where S3 is the 3-sphere, and
Z ⊂ R3; and u ∈ U where U ⊂ R3. Then, the Lyapunov function, V2 : S3 × Z 7→ R is
defined as

V2(z) = (1−∆β0)2 + ∆̃β
T
∆̃β +

1
2
ωTK3ω (43)

where K3 ∈ R3×3 is positive definite. It is again evident that V2 is positive definite every
except at equilibrium. Taking the time derivative of V2,

V̇2 = ωT
[
∆̃β + K3ω̇

]
(44)

Again, to make V̇ negative definite, Eqs. (9) are substituted in Eq. (44) to obtain the
following control law:

u = −ω̃
(
Iω + h

)
+ τd +

(
I + QJaQ

T
)(

L3ω + L4∆̃β
)

(45)

where L3 = K−1
3 K4, L4 = K−1

3 , and K4 ∈ R3×3 is positive definite. The control law in
Eq. (45) can also be shown to be asymptotically stable by the use of LaSalle’s theorem.

NUMERICAL SIMULATIONS

In this section, a sample configuration for a Fizeau interferometer is introduced and
control requirements for stationkeeping and attitude maintenance for the operational modes
are calculated. In the example considered, the mirror satellites are distributed over a sphere
of radius 250m, the center of which is 100km away from the focal satellite, along the LOS
vector. The 20 mirror satellites are assumed to be evenly distributed over 5 rings. The 4
rings on each satellite are placed 90◦ apart from each other, and the satellites on each ring
are staggered by 18◦ for uniform coverage, as shown in Figure 4. The positions of the rings
are given by:

di = −100− {0.175 − 0.190 − 0.205 − 0.220 − 0.235} km (46)

The formation may be rotated at any desired rate in the case of inertial pointing, since it
has been established that no optimal rate of rotation exists.

The satellite is modeled with three identical momentum wheels along its principal axes.
The following values for the moments of inertia of the satellite and momentum wheels are
selected:

I1 = 5000kgm2 I2 = 10000kgm2 I3 = 12000kgm2 Ja = 0.6kgm2 Jt = 0.001kgm2

If the wheels are aligned with the principal axes of the satellite and their distance from the
center of mass of the spacecraft is assumed negligible, then the following are true:

h,h,u,u ∈ R3
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Q = 1

Ja = Ja1

Ii = Ii + 2Jt, i = 1 . . . 3

The effective SRP area of the satellite is taken to be 20m2, and the center of the pressure
is located at (0.2b2 + 0.1b3)m. The coefficients ρs = 0.05, ρa = 0.8, and ρd = 0.15. For the
sake of simplicity, the gains selected for attitude control are of the form Li = li1. The values
li are selected such that the closed-loop dynamics have high frequency and critical damping.
This is necessary so that slewing maneuvers are performed in a matter of days instead of
months, and the desired pointing is attained in an exponential fashion. Consequently,
l2, l4 > 104 and l1 = 2

√
l2, l3 = 2

√
l4. The gains for translational control are taken as the

identity matrices since this paper does not consider formation establishment.

Translation Control

The control requirement for translational motion is measured by integrating the norm
of the control, and compared in terms of the ∆v-equivalent. That is, J =

∫ t
0 |u| dt.

The ∆v for a desired pointing of βD/Edes
= {0 0 0 1}T (constant pointing along

the Sun-Earth/Moon line) is shown in Figure 6(i). The ∆v varies from 0.5m/s/yr for the
first (closest) ring, to 0.46m/s/yr for the fifth (farthest) ring. For an inertial pointing
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Figure 6. ∆v for Desired Operational Modes

of βDdes
= {0 0 0 1}T , the formation-keeping ∆v is shown in Figure 6(ii). The ∆v

for inertial pointing varies from 2.27m/s/yr for the innermost ring to 1.96m/s/yr for the
outermost ring. It is observed that the ∆v for inertial pointing is more than the ∆v for
LVLH pointing. This is a direct consequence of the constant slewing that is occuring to
keep the formation fixed inertially. The base ∆v for keeping the formation on the Lissajous
trajectory are of the order of 0.025-0.030m/s/yr with the use of the quintic splines. In both
cases, the force due to SRP is negligible in comparison with gravitational forces.
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Attitude Control

For a satellite with the inertia and SRP properties selected as above, the SRP torque
is of the order of 10−5Nm and the gravity-gradient torque is of the the order of 10−9Nm.
The motor torques required for LVLH pointing in the orientation selected above, are shown
in Figure 7(i). It is observed that the motor torque in the b3 axis is almost constant while
the other two vary periodically; this is because the orientation of the Sun with respect to
the mirrors is fixed, and for the desired orientation studied, no rotation about the e3/b3

axis is required. Assuming a fixed torque of 2.2 × 10−5Nm, a trivial calculation for the
wheel angular velocity in the b3 direction shows that Ω̇3 = (2.2×10−5/0.6)rad/s. Thus in 2
months, the wheel angular velocity is approximately 1815rpm. This can easily be observed
from Figure 7(ii). Since the motor torques about the other two axes are periodic, the rpm
profile of these wheels are also periodic. If the center of pressure is offset along b1 only,
then the SRP torque is many magnitudes lower. Thus, by judicious design, control for
SRP torque-negation can be minimized. Due to the constant nature of the torque from the
wheel along b3, the rpm of that wheel, shown in Figure 7(ii), increases in an almost linear
fashion. Since the rpm is certain to cross the threshold for momentum wheel design rpm,
it is evident that momentum dumping must be performed periodically.
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Figure 7. Control for LVLH Pointing

Figure 8(i) shows the motor torque for inertial pointing. It is observed that while
the magnitude of the torque is of the same order as that required in LVLH pointing, the
torque profile of all three motors is periodic in nature. This is because the satellite is fixed
inertially, and therefore rotating with respect to the Sun about the e3 axis. The wheel rpm
for this operation is shown in Figure 8(ii). Though the motor torques in Figure 8(i) appear
periodic in nature, u2 and u3 do not have zero mean. This leads to secular growth in the
corresponding wheel angular velocities. While they do not appear to grow at the same rate
as that seen in LVLH pointing, some form of momentum management will be required to
prevent saturation.
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Figure 8. Control for Inertial Pointing

Effect of the Gravity-Gradient Torque

It has been observed that the gravity-gradient torque is many magnitudes smaller than
the SRP torque. However, this torque cannot be ignored in the control formulation. To
study its effects, the component of τg appearing in τd is ignored from the expressions for u
in Eq. (39) and Eq. (45), but is present in the equations of motion in Eqs. (9). The excursion
in pointing for the LVLH and inertial attitude maintenance are shown in Figure 9(i) and
Figure 9(ii), respectively. In both cases, it is observed that the pointing error is periodic. If
the SRP torque is also neglected in the control formulation, then growth in yaw, pitch, and
roll pointing error (with respect to the desired LOS vector) is observed. In Figure 9(i), the
error magnitudes are of the order of 10−5 deg. However, given the astronomical distances
involved, this may mean very large errors in mission fulfilment. The errors involved in the
inertial case, shown in Figure 9(ii) are of the order of 10−3 deg and are considerably higher.
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Figure 9. Pointing Excursion due to Gravity-Gradient Torque

Thus is it observed that though the magnitude of the gravity gradient-torque is small, it
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is required to include its effects in control law formulation for high-fidelity missions such as
the ones considered in this paper. It is also seen that using the wheel moments as specified,
the typical rate of wheel rotations to control gravity-gradient torque are of orders < 0.1rpm.
Therefore, some form of precision control is required for such missions.

CONCLUSIONS

A methodology for mission design of space-based interferometric systems around the
libration points has been developed that takes into account combined translation and atti-
tude kinematics of the spacecraft. Rigid body effects do not affect the translational motion
of the satellite, but the translational motion of the satellite induces a gravity-gradient torque
on it. Furthermore, solar radiation pressure is also included in the model, and its effects
are studied.

The formation is placed on a nominal, accurate Lissajous orbit that takes into account
the eccentricity of the Earth’s orbit around the Sun. A stationkeeping methodology that
uses quintic splines is used for continuous-control formation maintenance. A methodology
is proposed that homogenizes the control requirement for all the satellites by rotating the
formation at a particular rate. In some cases, this is shown to reduce the control requirement
for stationkeeping.

Two operational modes of the interferometer are analyzed - inertial pointing, and LVLH
pointing. Slewing maneuvers can easily be studied since the control law for inertial pointing
can easily be extended to a form an inertial orientation about which slewing must stabilize
the system. In both cases, the control requirement for formation-keeping is calculated.
Control laws that are based on Lyapunov analysis yield algorithms to ensure that the
attitude of the spacecraft does not deviate from the LOS vector due to gravitational and
eccentricity effects.

One issue is the necessity of low-order thrust and attitude controls. These are required
for accurate pointing; a small error in pointing angle leads to large errors in interferometric
observations due to the astronomical distances involved. It should be noted that the exact
thrusts required will, in general, vary due to the fact that the actuators themselves rotate
with the satellite.
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