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With the desire to be able to have accurate solutions for 
relative motions, Hill’s equations are insufficient for long-
term prediction due to the spherical Earth, circular 
reference orbit and linearization assumptions. Using 
differential orbital elements, the Gim-Alfriend state 
transition matrix (STM) incorporates 1st order J2 and 
eccentricity effects in the equations with the assumption of 
linearization. In this paper, we use the unit sphere method 
to get the exact kinematic description for relative positions 
and develop a high accuracy STM for relative motions. 

 
 
INTRODUCTION 
 
   The analysis of the relative motion of satellites began with the paper by Clohessy and 
Wiltshire [1] in 1960, who derived the equations of motion for one satellite relative to 
another when the reference satellite is in a circular orbit about a spherical Earth. They 
also assumed that the separation distance between the satellites is small compared to the 
orbit radius so that the equations of motion could be linearized. These are sometimes 
called Hill’s equations because Hill used the same approach in his research on the motion 
[2] of the moon. Lawden [3] and Tschauner and Hempel [4] obtained independently, the 
solution to the linearized equations of motion when the reference satellite is in an 
elliptical orbit. After that, Cater [5] and Melton [6] developed more efficient solutions of 
the relative motion. The characteristics of the above approach is to linearize the nonlinear 
equations then propagate the states in the Cartesian frame to obtain the STM. In 1995, 
Garrison et al [7] used a novel method to propagate the states in the orbital elements 
space then transform the differential orbital elements into the Cartesian coordinates with 
the linearization.  The linear approximation using the differential orbital elements is more 
accurate than that using the Cartesian or curvilinear coordinates as shown in Ref [8]. 
Recently the research interest has been focused on formation flying so that the long-time 
accuracy of the bounded solutions of relative motion is a major concern. Although 
several solutions exist for the unperturbed non-circular reference orbit problem, state 
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transition matrices including perturbations due to J2 and geometric nonlinearity effects 
still remain elusive. Using differential orbital elements, Alfriend et al. [9] described 
relative motion in terms of mean elements, incorporating 1st order J2 and eccentricity 
effects in the equations. Although the mean orbital elements can be analytically 
propagated in the mean space, we need to transfer the mean orbital elements into 
positions and velocities in the LVLH Cartesian frames. Gim and Alfriend [10] used a 
geometric method and Brouwer theory [11] to complete the transformation and get the 
STM of the relative motion for the perturbed non-circular reference orbit. The Gim and 
Alfriend’s STM was obtained by considering the relative motion as a result of small 
changes in the orbital elements of the Deputy with respect to those of the Chief.   
 
   In this paper, we use the unit sphere approach, proposed by Vadali [12], to establish a 
state transition matrix for the perturbed non-circular reference orbit problem. In the unit 
sphere approach, the relative motion problem is studied by projecting the motion of the 
two satellites onto a unit sphere. This is achieved by normalizing the position vector of 
each satellite with respect to its radius. This process allows one to study the relative 
motion using spherical trigonometry so that a kinematically exact description is obtained 
for the relative positions in terms of the differential orbital elements, without recourse to 
linearization. In order to obtain time-explicit expressions, the method requires the 
solution of Kepler’s equation or eccentricity expansions to obtain the radial distance and 
argument of latitude. Taking time derivatives for the relative positions, we get analytical 
expressions for the relative velocities with the help of Gauss’ equations. However, we do 
not find the linearly inverse analytical expressions for the relative motion. This is why we 
develop the linear STM based on the unit sphere approach. Our numerical evaluations 
using a nonlinearity index [13] show that this approach has a very high accuracy, as 
compared with Gim-Alfriend solutions.  
 
UNIT SPHERE APPROACH 
 
The relative position on the unit sphere is given by 
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where , are respectively, the radial, along-track, and cross-track relative 
positions on the unit sphere,  and C are the direction cosine matrices of the Chief and 
Deputy, and the subscripts C and D represent the Chief and Deputy, respectively. This 
results in analytical expressions for the so-called “sub-satellite” points that are functions 
of the angles only (right ascension Ω, inclination i, and argument of latitude θ).  Equation 
(1) can be expanded as 

∆x,  ∆y,  and ∆z
Cc D
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∆x = −1+ c2 0.5iC( )c2 0.5iD( )c θD −θC + ΩD − ΩC( )
        + s2 0.5iC( )s2 0.5iD( )c θD −θC − ΩD + ΩC( )
        + s2 0.5iC( )c2 0.5iD( )c θD +θC + ΩD − ΩC(
        + c2 0.5iC( )s2 0.5iD( )c θD +θC − ΩD + ΩC( )
        + 0.5s iC( )s iD( ) c θD −θC( )− c θD +θC( )⎡⎣ ⎤⎦

)

)

                                                      (2) 

 
∆y = c2 0.5iC( )c2 0.5iD( )s θD −θC + ΩD − ΩC( )
        + s2 0.5iC( )s2 0.5iD( )s θD −θC − ΩD + ΩC( )
        -s2 0.5iC( )c2 0.5iD( )s θD +θC + ΩD − ΩC(
        -c2 0.5iC( )s2 0.5iD( )s θD +θC − ΩD + ΩC( )
        + 0.5s iC( )s iD( ) s θD −θC( )− s θD +θC( )⎡⎣ ⎤⎦

                                                         (3) 

    
∆z = −s iC( )s ΩD − ΩC( )c θD( )− s iC( )c iD( )c ΩD −ΩC( )− c iC( )s iD( )⎡⎣ ⎤⎦ s θD( )         (4)                       

 
The actual relative positions between the two satellites are   
 

δ x = rD 1+ ∆x( )− rC                                                                                                      (5) 

δ y = rD∆y                                                                                                                      (6)                        
δ z = rD∆z                                                                                                                      (7)                        

 
Taking time derivatives, we have 
 

( )1D D Cx r x r xδ = + ∆ + ∆ − r                                                                                            (8) 

D Dy r y r yδ = ∆ + ∆                                                                                                           (9)                         

D Dz r z r zδ = ∆ + ∆                                                                                                           (10)                         
 
 
GIM-ALFRIEND STATE TRANSITION MATRIX 
 
    To avoid the singularity due to the Gauss equation when eccentricity is zero, choose 
the nonsingular orbital elements e = a,θ , i,q1,q2 ,Ω( ) and 

q1 = ecosω  
q2 = esinω  
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where  is the semi-major axis and a ω  is the argument of perigee. Assume e  represents 
the nonsingular element vectors in the mean space. Let φe t,t0( ) be the STM for the 

relative mean variables and let D t( ) be the transformation matrix from the relative mean 
variables to the relative osculating variables 
  

δe t( )= φe t,t0( )δe t0( )                                                                                                (11) 

     δe t( )= D t( )δe t( )= D t( )φe t,t0( )D−1 t0( )δe t0( )                                                      (12)       

                                                                                                             (13) δX = ∑ t( )δe t( )
 
   Thus, the relative state at any time can be expressed as follows [6] 

 
  δX t( )= Φ t,t0( )δX t0( )                                                                                              (14)        

Φ t,t0( )= ∑ t( )D t( )φe t,t0( )D−1 t0( )∑−1 t0( )                                                                (15)   
 
where  is the STM for the relative motion and Φ t,t0( ) ∑ t( ) is called the transformation 
matrix that is derived by the geometric method. 
 
A NEW STATE TRANSFORMATION MATRIX 
 
  In this section, we derive the transformation matrix using the unit sphere approach. 
Gauss’ equations in terms of the nonsingular elements with the perturbing accelerations 
in the Local-Vertical Local-Horizontal (LVLH) frame are   
 

a =
2a2

h
q1 sinθ − q2 cosθ( )ur +

p
r

uθ
⎡

⎣
⎢

⎤

⎦
⎥                                                                        (16) 

θ =
h
r 2 −

r sinθ cos i
hsin i

uh                                                                                                   (17)   

i =
r cosθ

h
uh                                                                                                                  (18) 

q1 =
psinθ

h
ur +

p + r( )cosθ + q1r
h

uθ +
q2r sinθ cos i

hsin i
uh                                                (19) 

q2 = −
pcosθ

h
ur +

p + r( )sinθ + q2r
h

uθ −
q1r sinθ cos i

hsin i
uh                                             (20) 

Ω =
r sinθ
hsin i

uh                                                                                                                   (21) 

 
where 
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p = a 1− q1
2 − q2

2( )                                                                                                           (22) 

h = µ p                                                                                                                          (23) 

r =
p

1+ q1 cosθ + q2 sinθ
                                                                                                  (24) 

Considering the gravity perturbation , the accelerations are J2

ur = −1.5
J2µRe

2

r 4 1− 3sin2 isin2θ( )                                                                                 (25)  

uθ = −1.5
J2µRe

2 sin2 isin2θ
r 4                                                                                            (26)  

uh = −1.5
J2µRe

2 sin2isinθ
r 4                                                                                             (27)  

 
From Eqs.(2-4), we have 
 

C D C D C
C D C D C D

x x x x x xx i i
i i

θ θ
θ θ
∂∆ ∂∆ ∂∆ ∂∆ ∂∆ ∂∆

∆ = + + + + Ω + Ω
∂ ∂ ∂ ∂ ∂Ω ∂Ω D                                   (28)  

C D C D C
C D C D C D
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i i

θ θ
θ θ
∂∆ ∂∆ ∂∆ ∂∆ ∂∆ ∂∆
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C D C D C
C D C D C D

z z z z z zz i i
i i

θ θ
θ θ
∂∆ ∂∆ ∂∆ ∂∆ ∂∆ ∂∆

∆ = + + + + Ω + Ω
∂ ∂ ∂ ∂ ∂Ω ∂Ω D                                   (30)  

 
Since  eD = eC + ∆e
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From Eqs.(22-24), we have 

1
1 2

D D D D
2D D D D

D D D D
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Now we obtain the transformation matrix 

∑ t( )= ∂δx
∂∆e

 
∂δx
∂∆e

 
∂δ y
∂∆e

 
∂δ y
∂∆e

 
∂δ z
∂∆e

 
∂δ &z
∂∆e
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⎝⎜

⎞
⎠⎟

T

                                                            (36) 

 
where 
 
∂δ x
∂∆e

=
∂rD

∂∆e
1+ ∆x( )+ rD

∂∆x
∂∆e

                                                                                        (37) 

( )1D D
D

r r
D

x xx r x r xδ ∂ ∂∂ ∂∆
= + ∆ + + ∆ +

∂∆ ∂∆ ∂∆ ∂∆ ∂∆e e e e
∂∆

e
                                                           (38) 

∂δ y
∂∆e

=
∂rD

∂∆e
∆y + rD

∂∆y
∂∆e

                                                                                                 (37) 

D D
D

r ry yy r y rD
yδ ∂ ∂∂ ∂∆

= ∆ + + ∆ +
∂∆ ∂∆ ∂∆ ∂∆ ∂∆e e e e

∂∆
e

                                                                   (38) 

∂δ z
∂∆e

=
∂rD

∂∆e
∆z + rD

∂∆z
∂∆e

                                                                                                 (39) 
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D D
D

r rz zz r z rD
zδ ∂ ∂∂ ∂∆

= ∆ + + ∆ +
∂∆ ∂∆ ∂∆ ∂∆ ∂∆e e e e

∂∆
e

                                                                    (40) 

 
 
RESULTS 
 
    To evaluate the proposed method, the predicted relative motion by the unit sphere 
STM is compared with those by the Gim-Alfriend STM. 
 
Chief and Deputy Orbits  
 The mean elements of the Chief orbit are 
a = 8000 (km), i (deg), e= 50 = 0.01 
Ω = 0 (deg), ω = 0  (deg),  (deg) M0 = 0
     The Deputy orbit can be obtained [14] 
 

    δa = −0.5J2a
Re

a
⎛

⎝⎜
⎞

⎠⎟

2
3η + 4
η4

⎛

⎝⎜
⎞

⎠⎟
1− 3cos2 i( ) q1δq1 + q2δq2

η2

⎛

⎝⎜
⎞

⎠⎟
+ sin 2iδ i

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                     (41)   

       δλ = −δΩcos i  (42) 

  δ i =
ρcosα0

a
 (43) 

       δq1 = −
ρ sinα0

2a
 (44) 

 δq2 = −
ρcosα0

2a
 (45) 

 δΩ = −
ρ sinα0

asin i
 (46) 

 
where λ = ω + M , η = 1− e2 . ρ  is the relative orbit size and  is the initial phase 
angel. Eqs(41-46) are used to establish the projected circular orbit (PCO) for a circular 
Chief orbit. Actually Eq.(41) is the bounded condition or period matching condition. 
When the Chief orbit is not circular they establish a relative motion orbit that is close to a 
PCO. Because the period matching condition is used there is very little in-track drift. The 
radius of the PCO 

α0

ρ  is chosen as 40 km. The initial phase angle  is set to zero. α0

 
Comparisons 
 
Figs. 1-4 show the position and velocity errors using the unit sphere STM, Gim-Alfriend 
STM. The errors are obtained by comparing the solutions from the STMs with the 
numerical integrations, respectively. The solutions of the numerical integrations are 
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obtained by numerically integrating the equations of motion of both satellites in the ECI 
frame with a  gravity field , differencing them and transforming the LVLH frame.  2J

 
Fig.1 Position Errors by Unit Sphere STM 

  
Fig.2 Position Errors by Gim-Alfriend STM 
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Fig.3 Velocity Errors by Unit Sphere STM 

 

 
Fig.4 Velocity Errors by Gim-Alfriend STM 
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   The results indicate the STMs are very accurate descirbing the relative motions. The 
STM from the unit sphere is better than that from Gim-Alfriend, since the former is 
achieved from the exact kinematic description, not from linear expressions in differential 
orbital elements to build the latter.  
   
   One can see there are initial biases in x and z directions and small drift in y direction in 
Figs. 1-2. The initial bias means the PCO is not centered. The small secular drifts are 
caused by neglecting  in the mean elements propagation and using linear periodic 
matching condition Eq. (41).    

J2
2

 
   Figs.1 and 3 have the same characteristics as Figs. 2 and 4 except the amplitudes. This 
is because we just rebuild the transformation matrix from the orbital elements to the 
coordinates in the LVLH in the Gim-Alfriend STM.    
 
    To get a big picture of the comparison, the results from the above methods are shown 
through the nonlinear modeling index in Fig. 5. The nonlinear index concept is developed 
by Alfriend and Yan [13] to compare the accuracy of the methods. The radius ρ of the 
PCO is chosen as 0.16, 0.80, 1.6, 4, 8, 12, 16, 40, 80, 120 and 160 km and the 
eccentricity of Chief orbit 0.01. Fig. 5 illustrates the index varying with the radius when 
the eccentricity is 0.1.  

 
Fig. 5 Index Comparison for e = 0.01 

 
    The modeling error index is an effective tool for evaluating the accuracy of 
approximate methods of relative motions. Fig. 5 illustrates the indices grow linearly with 
increasing radius, since nonlinearity increases with the PCO size.  
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   Fig. 5 again shows the result from the unit sphere approach is better than that from the 
Gim-Alfriend STM, although both of them provide a good representation of the motion.      
 
CONCLUSIONS 
 
   We develop a high accurate STM to describe relative motions using the unit sphere 
approach. We use the error comparison and index comparison to compare it with the 
Gim-Alfriend STM. The result from the unit sphere STM is better than that from the 
Gim-Alfriend STM.   
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